• 제목/요약/키워드: moving wheel loads

검색결과 31건 처리시간 0.026초

고속철도 교량의 속도별 주행시험을 통한 교량/열차 상호작용해석의 검증 (Verification Study of Train/Bridge Interaction Analysis through Field Tests of a High Speed Railway Bridge)

  • 김성일;이주범;김현민;이희업
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1555-1561
    • /
    • 2011
  • The dynamic behavior of a bridge under moving loads has been investigated over many years. Especially, with the introduction of High Speed Railway, numerous theoretical studies on the interaction problem between bridges and trains are carried out. In the present study, advanced bridge/train interaction analyses are performed and compared with field tests of a simply-supported 40m long PSC box girder bridge of Kyung-Bu High Speed Railway. Vertical displacements and vertical accelerations of a bridge with increasing speeds are analyzed. In addition, wheel load reduction rates and accelerations of a car-body of the train are investigated for a study of appropriateness of traffic safety criteria of bridge design specification.

  • PDF

지반과 슬래브궤도의 상호작용 (Soil and Slab Track Interaction)

  • 강보순;황성춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.334-339
    • /
    • 2002
  • In this report, numerical investigations have demonstrated, that the displacement underneath a moving loading reach a maximum value, if the speed of the load is equal to propagation velocity of the maximum wave. The load speed for which the maximum displacement occurs is called critical speed. The critical speed divides the velocities in a subcritical and a super-critical region. By means of calculations the dynamic behaviour of the slab track-soil is investigated. For concrete slab track dynamic wheel load are given in dependence of relevant excitation mechanismen and speed of the train. These loads can be used for the dimensioning of the track as well as for prognosis of the vibrations at the track and the surrounding soil.

  • PDF

고속철도 운행에 의한 진동전달특성 및 인접건물에 미치는 영향에 관한 연구 (A Study on the Characteristics of Transferring Vibration and Effect of Nearby-Building Induced by the High-speed Train in Operation)

  • 배동명;신창혁;최철은;박상곤;백용진
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.354-364
    • /
    • 2001
  • The vibration induced by high speed train running on rail is dealt with as an environmental problem. The train induced vibration is characterized by moving loads at specific frequencies and soil conditions. In fact, it is predicted that the vibration sources are involved the wheel distance, number of cars, speed of operation, drift of rails, structural born vibration, etc. In this paper the characteristics of transferring vibration induced by the high-speed train in operation is discussed. Field measurements was conducted at region from Chungnam Yungj So-jung-myan to Chungbuk Chungwon hyun-do-myun. In the near future. these data will be used as the fundamental data for establishment of the countermeasure for vibrational reduction of high speed train using the results of the field measurements and quantitative prediction of the vibration level

  • PDF

삼차원 해석에 의한 강합성교 바닥판의 교통유발진동 응답 평가 (Estimation of Slab Response of Plate Girder Bridge in Traffic-Induced Vibration by Three-Dimensional Analysis)

  • 김철우;카와타니 미츠오;이우현
    • 한국강구조학회 논문집
    • /
    • 제10권2호통권35호
    • /
    • pp.263-277
    • /
    • 1998
  • 최근 교량상 주행 차량의 중량화 및 대형화 그리고 교통량의 증대로 교량의 바닥판 등의 피로 손상이 문제화되고 있다. 이러한 손상의 주 요인은 교량의 노면 및 신축 이음부의 단차 위를 주행하는 차량의 동적 접지력으로 볼 수 있다. 이에 대해 바닥판의 거동을 적절하게 해석 할 수 있는 삼차원 동적 응답 해석이 필요하게 되었다. 따라서 본 연구에서는 삼차원 차량 및 교량 모델을 구축하여 바닥판의 동적 응답 및 차량의 동적 접지력을 계산하고, 신축 이음부에 개재된 단차의 영향에 따른 바닥판의 응답을 평가 해보았다. 해석치는 일본 오오사카의 판신(Hanshin)고속도로 매전(Umeda) 입로교에서 수행한 실측치와 비교하였다.

  • PDF

고속열차 주행 시 지진하중을 고려한 현수교의 주행안전성 및 승차감 분석 (Traffic Safety & Passenger Comforts of a Suspension Bridge Considering Seismic Loads)

  • 김성일;김동석
    • 한국철도학회논문집
    • /
    • 제14권1호
    • /
    • pp.57-65
    • /
    • 2011
  • 교량을 주행하는 열차의 주행안전성과 승차감의 확보를 위해 Eurocode, 신간선 기준, 호남고속철도 설계지침 등에서는 교량의 연직변위, 연직가속도, 면틀림 등의 항목으로 제한하고 있다. 그러나 이와 같은 제한 기준은 교량 설계자의 편의를 위한 간접적인 방법이다. 또한 이와 같은 기준은 일반적인 경간(Eurocode의 경우 120m 이하)에 대한 제한 기준으로서, 이 이상의 장경간 교량의 경우에는 교량/열차 상호작용 해석 등에 의한 면밀한 검토를 제안하고 있다. 본 연구에서는 교량/열차 상호작용 해석을 수행하여 열차에서의 응답을 통해 교량 상을 주행하는 열차의 주행안전성 및 승차감을 직접적으로 평가하고자 하였다. 즉, 중앙경간 300m의 현수교를 주행하는 KTX 열차에 대하여 열차 내부의 가속도와 윤중감소율을 구해 평가하는 방법을 취하였다. 또한, 이동 열차하중과 지진하중이 동시에 작용할 경우를 고려한 교량/열차/지진 상호작용해석을 수행하여 지진 시의 응답을 평가하였다.

주행차량에 의한 궤도 동적?성의 매개변수 분석 (Parametric Analysis in Dynamic Characteristics of Railway Track due to Travelling Vehicle)

  • 김상효;이용선;조광일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.337-342
    • /
    • 2003
  • The dynamic load effects are conveyed to the railway bridges through tracks which are generated by moving trains The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges containing the track system. However, the track effects have been neglected or simplified by spring elements in the most studies since it is quite complex to consider the track systems in the dynamic analysis models of railway bridges. In this study, track system on railway bridges is modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. In addition, this program is developed with the precise 20-car model and a continuous PSC(prestressed concrete) box girder bridge, which is the main bridge type of Korea Train express(KTX). Three-dimensional elements are used for both. The dynamic response of railway bridges is found to be affected depending on whether the track model is considered or not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response is decreased remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge.

  • PDF

궤도모형에 따른 철도교량의 동적응답분석 (The Dynamics Responses of Railway Bridges Considering the Track Model)

  • 김상효;이용선;정준;이준석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.715-720
    • /
    • 2002
  • The dynamic load effects, generated by moving trains, are transferred to the railway bridges through tracks. The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges including the track system. However, the track models have been neglected or simplified by spring elements in the most studies since it is quite complicated to consider the track systems in the dynamic analysis models of railway bridges. In this study track system on railway bridges are modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. A 40m simply supported prestressed concrete box-girder system adopted for high-speed railway bridges are modeled for simulation works. The train models are composed of 20 cars for KTX. The dynamic response of railway bridges are found to be affected depending on whether the track model is considered for not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response decreases remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge, especially for KTX trains.

  • PDF

고속철도 교량의 동특성 해석을 위한 준3차원 차량/궤도/교량 상호작용 해석기법의 개발 (Development of a Quasi-Three Dimensional Train/Track/Bridge Interaction Analysis Program for Evaluating Dynamic Characteristics of High Speed Railway Bridges)

  • 김만철
    • 한국전산구조공학회논문집
    • /
    • 제16권2호
    • /
    • pp.141-151
    • /
    • 2003
  • 철도교량은 차량과 교량의 상호작용에 의해 유발되는 동하중을 받고 있다. 이러한 동적인 효과는 교량 각 부재에 충격과 피로를 유발하고, 교량의 잔존수명에 영향을 미치게 된다 따라서 수치적 또는 시험적 방법에 의한 교량의 실제적인 동적 거동을 분석하는 것이 매우 중요하다. 본 논문에서는 KTX 차량의 주행에 따른 교량의 동적 특성을 구조적 안전성, 주행 안전성 및 승차감 측면에서 평가할 수 있는 차량/궤도/교량 상호작용 해석프로그램을 개발하였다. 차량/궤도/교량의 실질적인 모델링을 위하여 차륜/레일 접촉 모델링을 위한 헤르찌안 스프링 및 도상에 대한 윈클러 요소를 적용하였다. 또한 개발 프로그램은 준3차원해석으로 차량의 복선제도 주행에 따른 3차원 편심 효과를 고려하기 위해 비톤 자유도 및 기하학적인 관계에 따른 제약조건식을 사용하였다. 개발프로그램의 검증을 위해서 고속철도교량중 가장 일반적인 형식인 PSC 박스교(2@40m=80m)에 대해 수치해석결과 및 계측시험 결과를 비교하였다.

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.

Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip

  • Li Zhu;Ray Kai-Leung Su;Wei Liu;Tian-Nan Han;Chao Chen
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.207-233
    • /
    • 2023
  • Steel-concrete composite box girder bridges are widely used in the construction of highway and railway bridges both domestically and abroad due to their advantages of being light weight and having a large spanning ability and very large torsional rigidity. Composite box girder bridges exhibit the effects of shear lag, restrained torsion, distortion and interface bidirectional slip under various loads during operation. As one of the most commonly used calculation tools in bridge engineering analysis, one-dimensional models offer the advantages of high calculation efficiency and strong stability. Currently, research on the one-dimensional model of composite beams mainly focuses on simulating interface longitudinal slip and the shear lag effect. There are relatively few studies on the one-dimensional model which can consider the effects of restrained torsion, distortion and interface transverse slip. Additionally, there are few studies on vehicle-bridge integrated systems where a one-dimensional model is used as a tool that only considers the calculations of natural frequency, mode and moving load conditions to study the dynamic response of composite beams. Some scholars have established a dynamic analysis model of a coupled composite beam bridge-train system, but where the composite beam is only simulated using a Euler beam or Timoshenko beam. As a result, it is impossible to comprehensively consider multiple complex force effects, such as shear lag, restrained torsion, distortion and interface bidirectional slip of composite beams. In this paper, a 27 DOF vehicle rigid body model is used to simulate train operation. A two-node 26 DOF finite beam element with composed box beams considering the effects of shear lag, restrained torsion, distortion and interface bidirectional slip is proposed. The dynamic analysis model of the coupled composite box girder bridge-train system is constructed based on the wheel-rail contact relationship of vertical close-fitting and lateral linear creeping slip. Furthermore, the accuracy of the dynamic analysis model is verified via the measured dynamic response data of a practical composite box girder bridge. Finally, the dynamic analysis model is applied in order to study the influence of various mechanical effects on the dynamic performance of the vehicle-bridge system.