• Title/Summary/Keyword: mountain-pass theorem

Search Result 28, Processing Time 0.025 seconds

NONLINEAR BIHARMONIC EQUATION WITH POLYNOMIAL GROWTH NONLINEAR TERM

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.379-391
    • /
    • 2015
  • We investigate the existence of solutions of the nonlinear biharmonic equation with variable coefficient polynomial growth nonlinear term and Dirichlet boundary condition. We get a theorem which shows that there exists a bounded solution and a large norm solution depending on the variable coefficient. We obtain this result by variational method, generalized mountain pass geometry and critical point theory.

MULTIPLE SOLUTIONS FOR A CLASS OF QUASILINEAR SCHRÖDINGER SYSTEM IN ℝN

  • Chen, Caisheng;Chen, Qiang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1753-1769
    • /
    • 2016
  • This paper is concerned with the quasilinear $Schr{\ddot{o}}dinger$ system $$(0.1)\;\{-{\Delta}u+a(x)u-{\Delta}(u^2)u=Fu(u,v)+h(x)\;x{\in}{\mathbb{R}}^N,\\-{\Delta}v+b(x)v-{\Delta}(v^2)v=Fv(u,v)+g(x)\;x{\in}{\mathbb{R}}^N,$$ where $N{\geq}3$. The potential functions $a(x),b(x){\in}L^{\infty}({\mathbb{R}}^N)$ are bounded in ${\mathbb{R}}^N$. By using mountain pass theorem and the Ekeland variational principle, we prove that there are at least two solutions to system (0.1).

EXISTENCE OF WEAK NON-NEGATIVE SOLUTIONS FOR A CLASS OF NONUNIFORMLY BOUNDARY VALUE PROBLEM

  • Hang, Trinh Thi Minh;Toan, Hoang Quoc
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.737-748
    • /
    • 2012
  • The goal of this paper is to study the existence of non-trivial non-negative weak solution for the nonlinear elliptic equation: $$-div(h(x){\nabla}u)=f(x,u)\;in\;{\Omega}$$ with Dirichlet boundary condition in a bounded domain ${\Omega}{\subset}\mathbb{R}^N$, $N{\geq}3$, where $h(x){\in}L^1_{loc}({\Omega})$, $f(x,s)$ has asymptotically linear behavior. The solutions will be obtained in a subspace of the space $H^1_0({\Omega})$ and the proofs rely essentially on a variation of the mountain pass theorem in [12].

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR KIRCHHOFF-SCHRÖDINGER-POISSON SYSTEM WITH CONCAVE AND CONVEX NONLINEARITIES

  • Che, Guofeng;Chen, Haibo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1551-1571
    • /
    • 2020
  • This paper is concerned with the following Kirchhoff-Schrödinger-Poisson system $$\begin{cases} -(a+b{\displaystyle\smashmargin{2}\int\nolimits_{\mathbb{R}^3}}{\mid}{\nabla}u{\mid}^2dx){\Delta}u+V(x)u+{\mu}{\phi}u={\lambda}f(x){\mid}u{\mid}^{p-2}u+g(x){\mid}u{\mid}^{p-2}u,&{\text{ in }}{\mathbb{R}}^3,\\-{\Delta}{\phi}={\mu}{\mid}u{\mid}^2,&{\text{ in }}{\mathbb{R}}^3, \end{cases}$$ where a > 0, b, µ ≥ 0, p ∈ (1, 2), q ∈ [4, 6) and λ > 0 is a parameter. Under some suitable assumptions on V (x), f(x) and g(x), we prove that the above system has at least two different nontrivial solutions via the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory. Some recent results from the literature are improved and extended.

INFINITELY MANY HOMOCLINIC SOLUTIONS FOR DAMPED VIBRATION SYSTEMS WITH LOCALLY DEFINED POTENTIALS

  • Selmi, Wafa;Timoumi, Mohsen
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.693-703
    • /
    • 2022
  • In this paper, we are concerned with the existence of infinitely many fast homoclinic solutions for the following damped vibration system $$(1){\hspace{32}}{\ddot{u}}(t)+q(t){\dot{u}}(t)-L(t)u(t)+{\nabla}W(t,u(t))=0,\;{\forall}t{\in}{\mathbb{R}},$$ where q ∈ C(ℝ, ℝ), L ∈ C(ℝ, ${\mathbb{R}}^{N^2}$) is a symmetric and positive definite matix-valued function and W ∈ C1(ℝ×ℝN, ℝ). The novelty of this paper is that, assuming that L is bounded from below unnecessarily coercive at infinity, and W is only locally defined near the origin with respect to the second variable, we show that (1) possesses infinitely many homoclinic solutions via a variant symmetric mountain pass theorem.

NONTRIVIAL PERIODIC SOLUTION FOR THE SUPERQUADRATIC PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2009
  • We show the existence of a nontrivial periodic solution for the superquadratic parabolic equation with Dirichlet boundary condition and periodic condition with a superquadratic nonlinear term at infinity which have continuous derivatives. We use the critical point theory on the real Hilbert space $L_2({\Omega}{\times}(0 2{\pi}))$. We also use the variational linking theorem which is a generalization of the mountain pass theorem.

  • PDF

NONTRIVIAL SOLUTION FOR THE BIHARMONIC BOUNDARY VALUE PROBLEM WITH SOME NONLINEAR TERM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.117-124
    • /
    • 2013
  • We investigate the existence of weak solutions for the biharmonic boundary value problem with nonlinear term decaying at the origin. We get a theorem which shows the existence of nontrivial solutions for the biharmonic boundary value problem with nonlinear term decaying at the origin. We obtain this result by reducing the biharmonic problem with nonlinear term to the biharmonic problem with bounded nonlinear term and then approaching the variational method and using the mountain pass geometry for the reduced biharmonic problem with bounded nonlinear term.

EXISTENCE OF THE SOLUTIONS FOR THE ELLIPTIC PROBLEM WITH NONLINEAR TERM DECAYING AT THE ORIGIN

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.533-540
    • /
    • 2012
  • We consider the multiplicity of the solutions for the elliptic boundary value problem with $C^1$ nonlinear term decaying at the origin. We get a theorem which shows the existence of the nontrivial solution for the elliptic problem with $C^1$ nonlinear term decaying at the origin. We obtain this result by reducing the elliptic problem with the $C^1$ nonlinear term to the el-liptic problem with bounded nonlinear term and then approaching the variational method and using the mountain pass geometry for the reduced the elliptic problem with bounded nonlinear term.

The existence of solutions of a nonlinear wave equation

  • Choi, Q-Heung;Jung, Tack-Sun
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.153-167
    • /
    • 1996
  • In this paper we investigate the existence of solutions of a nonlinear wave equation $u_{tt} - u_{xx} = p(x, t, u)$$ in $H_0$, where $H_0$ is the Hilbert space spanned by eigenfunctions. If p satisfy condition $(p_1) - (p_3)$, this nonlinear gave equation has at least one solution.

  • PDF

EXISTENCE AND MULTIPLICITY RESULTS FOR SOME FOURTH ORDER SEMILINEAR ELLIPTIC PROBLEMS

  • Jin, Yinghua;Wang, Xuechun
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.473-480
    • /
    • 2009
  • We prove the existence and multiplicity of nontrivial solutions for a fourth order problem ${\Delta}^2u+c{\Delta}u={\alpha}u-{\beta}(u+1)^-$ in ${\Omega}$, ${\Delta}u=0$ and $u=0$ on ${\partial}{\Omega}$, where ${\lambda}_1{\leq}c{\leq}{\lambda}_2$ (where $({\lambda}_i)_{i{\geq}1}$ is the sequence of the eigenvalues of $-{\Delta}$ in$H_0^1({\Omega})$) and ${\Omega}$ is a bounded open set in $R^N$ with smooth boundary ${\partial}{\Omega}$. The results are proved by applying minimax arguments and linking theory.

  • PDF