References
- M. Alif and P. Omari, On a p-Laplace Neumann problem with asymptotically asymmetric perturbations, Nonlinear Anal. 51 51 (2002), no. 2, 369-389. https://doi.org/10.1016/S0362-546X(01)00835-5
- H. Amann and T. Laetsch, Positive solutions of convex nonlinear eigenvalue problems, Indiana Univ. Math. J. 25 (1976), no. 3, 259-270. https://doi.org/10.1512/iumj.1976.25.25021
- A. Ambrosetti and P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl. 73 (1980), no. 2, 411-422. https://doi.org/10.1016/0022-247X(80)90287-5
- G. Anello, Existence of infinitely many weak solutions for a Neumann problem, Nonlinear Anal. 57 (2004), no. 2, 199-209. https://doi.org/10.1016/j.na.2004.02.009
- H. Berestycki, I. Capuzzo Dolcetta, and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA 2 (1995), no. 4, 553-572. https://doi.org/10.1007/BF01210623
- H. Berestycki, I. Capuzzo Dolcetta, and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal. 4 (1994), no. 1, 59-78.
- K. J. Brown and A. Tertikas, On the bifurcation of radially symmetric steady-state solutions arising in population genetics, SIAM J. Math. Anal 22 (1991), no. 2, 400-413. https://doi.org/10.1137/0522026
- K. C. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math. 34 (1981), no. 5, 693-712. https://doi.org/10.1002/cpa.3160340503
- N. T. Chung and H. Q. Toan, Existence result for nonuniformly degenerate semilinear elliptic systems in RN, Glassgow. Math. J. 51 (2009), 561-570. https://doi.org/10.1017/S0017089509005175
- D. G. Costa and C. A. Magalhaes, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal. 23 (1994), no. 11, 1401-1412. https://doi.org/10.1016/0362-546X(94)90135-X
- T.-L. Dinu, Subcritical perturbations of resonant linear problem with sign-changing potential, Electron. J. Differential Equations 2005 (2005), no. 117, 15 pp.
- D. M. Duc, Nonlinear singular elliptic equation, J. London Math. Soc. (2) 40 (1989), no. 3, 420-440. https://doi.org/10.1112/jlms/s2-40.3.420
- W. H. Fleming, A selection-Migration model in population genetics, J. Math. Biol. 2 (1975), no. 3, 219-233. https://doi.org/10.1007/BF00277151
- D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer Verlag, Berlin, 1998.
- P. Hess, Multiple solutions of asymptotically linear elliptic boundary value problems, Proc. Equadiff IV, Prague 1977, Lecture notes in Math. 703, Springer Verlag, New York, 1979.
- P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations 5 (1980), no. 10, 999-1030. https://doi.org/10.1080/03605308008820162
- M. Lucia, P. Magrone, and H.-S. Zhou, A Dirichlet problem with asymptotically linear and changing sign nonlinearity, Rev. Mat. Complut. 16 (2003), no. 2, 465-481.
- B. Ricceri, Infinity many solutions of the Neumann problem for elliptic equations involving the p-Laplacian, Bull. London Math. Soc. 33 (2001), 331-340. https://doi.org/10.1017/S0024609301008001
- C. L. Tang, Solvability of Neumann problem for elliptic equations at resonnance, Nonlinear Anal. 44 (2001), 325-335.
- C. L. Tang, Some existence theorems for the sublinear Neumann boundary value problem, Nonlinear Anal. 48 (2002), no. 7, 1003-1011. https://doi.org/10.1016/S0362-546X(00)00230-3
- H. Q. Toan and N. Q. Anh, Multiplicity of weak solutions for a class of nonuniformly nonlinear elliptic equation of p-Laplacian type, Nonlinear Anal. 70 (2009), 1536-1546. https://doi.org/10.1016/j.na.2008.02.033
- H. Q. Toan and N. T. Chung, Existence of weak solutions for a class of nonuniformly nonlinear elliptic equations in unbounded domains, Nonlinear Anal. 70 (2009), no. 11, 3987-3996. https://doi.org/10.1016/j.na.2008.08.007
- H. S. Zhou, Positive solutions for a semilinear elliptic equation which is almost linear at infinity, Z. Angew. Math. Phys. 49 (1998), no. 6, 896-906. https://doi.org/10.1007/s000330050128
- H. S. Zhou, An application of a mountain pass theorem, Acta Math. Sinica 18 (2002), no. 1, 27-36. https://doi.org/10.1007/s101140100147