• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.044 seconds

Optimum Shape Design of Single-Sided Linear Induction Motors Using Response Surface Methodology and Finite Element Method (반응 표면법과 유한 요소법을 이용한 편측식 선형 유도 전동기의 형상 최적 설계)

  • Song, Han-Sang;Lee, Jung-Ho;Lee, Seung-Chul;Lee, Byeong-Hwa;Kim, Kyu-Seob;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1057-1058
    • /
    • 2011
  • This paper deals with finding the optimal ratio of height and length of Single-Sided Linear Induction Motors (SLIM) using Finite Element Method (FEM) for magnetic field analysis coupled with optimal design methodology. For effective analysis, FEM is conducted in time harmonic field which provides steady state performance with the fundamental components of voltage and current. The ratio of height to length providing the required output power is obtained by Response Surface Methodology (RSM) and optimal values are presented by the variation in output power. When output power is small, the ratio is high and as the power increases, the ratio shows a converged value. Considering the general application of linear motors, using a small ratio can be limiting, however, the shape ratio for maximum thrust can be identified.

  • PDF

Switching Pattern-Independent Simulation Model for Brushless DC Motors

  • Kang, Yong-Jin;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.173-178
    • /
    • 2011
  • In order to verify the performance of brushless DC (BLDC) motors, the simulation method has been widely used. The current of a BLDC motors flows on two phase windings to obtain a constant torque. However, the freewheeling current caused by the inductance component of a BLDC motor exists at the commutation point so that the current can flow on three phase windings at the same time. Due to the changes of the excited phases, the model equations are frequently changed during BLDC motor drive operation. The model equations can be also changed by the applied switching pattern since the current path in the inverter circuit changes according to switching pattern. A BLDC motor system can utilize various switching patterns for many different purposes. However, such changes of the model equations complicate the simulation procedure. In this paper, the technique to set up model equations is proposed to ease the simulation of a BLDC motor system through an inverter circuit analysis. The proposed technique will be verified using the C language. Although this method does not provide the level of detail obtainable from commercial simulation tools like PSIM or SIMULINK, it can provide an efficient way to quickly compare various conditions.

Development of a Sensorless Drive for Interior Permanent Magnet Brushless DC Motors (영구자석 매입형 브러시리스 직류 전동기용 센서리스 드라이브 개발에 관한 연구)

  • 여형기;홍창석;이광운;박정배;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.44-50
    • /
    • 1997
  • This paper describes an indirect sensing method for the rotor flux position of interior permanent magnet (IPM) brushless DC motors. The phase inductances of an IPM motor vary appreciably according to the rotor position. The waveform characteristics of the terminal voltage of IPM brushless DC motors is analysed and a simple and practical method for indirect sensing of the rotor position is proposed. A compact and economical sensorless drive is implemented and tested using a 87c196mc 16-bit one-chip microprocessor. The experimental results show the validity of the proposed method. The drive is applied to drive a compressor of air-conditioner and works well from 1,200 to 6,600 [rpm].

  • PDF

Smooth Torque Speed Characteristic of Switched Reluctance Motors

  • Zeng, Hui;Chen, Zhe;Chen, Hao
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.341-350
    • /
    • 2014
  • The torque ripple of switched reluctance motors (SRMs) is the main disadvantage that limits the industrial application of these motors. Although several methods for smooth-toque operation (STO) have been proposed, STO works well only within a certain torque and speed range because of the constraints of the supply voltage and peak current. Based on previous work that sought to expand the STO range, a scheme is developed in this study to determine the maximum smooth torque range at each speed. The relationship between the maximum smooth torque and speed is defined as the smooth torque speed characteristics (STSC), a concept similar to torque speed characteristics (TSC). STSC can be utilized to evaluate torque utilization by comparing it with TSC. Thus, the concept benefits the special design of SRMs, especially for the generation of smooth torque. Furthermore, the torque sharing function (TSF) derived from the proposed method can be applied to STO, which produces a higher smooth torque over a wider speed range in contrast to four typical TSFs. TSimulation and experimental results verify the proposed method.

A Probabilistic based Systems Approach to Reliability Prediction of Solid Rocket Motors

  • Moon, Keun-Hwan;Gang, Jin-Hyuk;Kim, Dong-Seong;Kim, Jin-Kon;Choi, Joo-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.565-578
    • /
    • 2016
  • A probabilistic based systems approach is addressed in this study for the reliability prediction of solid rocket motors (SRM). To achieve this goal, quantitative Failure Modes, Effects and Criticality Analysis (FMECA) approach is employed to determine the reliability of components, which are integrated into the Fault Tree Analysis (FTA) to obtain the system reliability. The quantitative FMECA is implemented by burden and capability approach when they are available. Otherwise, the semi-quantitative FMECA is taken using the failure rate handbook. Among the many failure modes in the SRM, four most important problems are chosen to illustrate the burden and capability approach, which are the rupture, fracture of the case, and leak due to the jointed bolt and O-ring seal failure. Four algorithms are employed to determine the failure probability of these problems, and compared with those by the Monte Carlo Simulation as well as the commercial code NESSUS for verification. Overall, the study offers a comprehensive treatment of the reliability practice for the SRM development, and may be useful across the wide range of propulsion systems in the aerospace community.

Comparative Analysis on Insulation Performance of Traction Motors for Hybrid Vehicles (하이브리드 차량용 견인전동기의 절연성능 비교분석)

  • Choi, Su-Yeon;Park, Chan-Yong;Kim, Sung-Wook;Park, Dae-Won;Kil, Gyung-Suk;Lee, Kang-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1124-1129
    • /
    • 2008
  • The object of this paper is to acquire the data related to insulation evaluation of hybrid vehicle traction motors. We made a comparative analysis on Insulation Resistance (IR), Dielectric Absorption Ratio (DAR), and Polarization Index (PI) of the motor stators. The experiment was carried out according to IEEE Std. 43 and IEC 60085-1 for insulation resistance test standard of rotating machinery. Test voltage of 500 V was applied between a phase and the enclosure. The IR and the DAR of used motors were lower than those of new ones. The DAR and the PI were $0.92{\sim}1.02$ and $0.74{\sim}1.1$, respectively and the result did not meet the recommendation basis 2 for insulation level H. From the experimental results, we could prepare parameters and basis for insulation evaluation of the traction motor stator by the comparative analysis of short-time insulation resistance changes, DAR and PI.

Design and Experimental Verification of an Interior Permanent Magnet Motor for a High-speed Machine (고속회전기 적용을 위한 매입형 영구자석 전동기의 설계 및 검증)

  • Kim, Sung-Il;Hong, Jung-Pyo;Lee, Woo-Taik;Choi, Chin-Chul;Kwon, Hyuck-Roul;Park, Jeong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.857_858
    • /
    • 2009
  • On account of small size and light weight, a high-speed machine is regarded as a key technology for many future applications of drive systems. In high-speed applications, permanent magnet (PM) synchronous motors have a number of merits such as high efficiency and high power density. Accordingly, they are suitable for driving the air-blower of a fuel cell electric vehicle (FCEV) where space and energy savings are critical. Particularly, a surface-mounted PM motor of them is mainly used as a high-speed machine. However, the motor has a fatal flaw owing to a retaining can to maintain the mechanical integrity of a rotor assembly. The can results in the increase of magnetic air-gap length in the surface-mounted PM motor. Thus, in this paper, an interior PM motor is designed in order to drive the air-blower of FCEV instead of the surface-mounted PM motor, and the experimental results of two models are compared to verify the capability of the interior PM motor for a high-speed machine.

  • PDF

Resistivity Changes and Intermetallic Growth After Thermal Aging of Matte Tin-Plated Copper Sheet for Current Collector in Fuel Cell (연료전지 집전판용 주석도금 동판의 열 열화에 따른 금속간화합물 성장 및 비저항 변화)

  • Kim, Jae-Hun;Kim, Ju-Han;Han, Sang-Ok;Koo, Kyung-Wan;Keum, Young-Bum;Jeong, Kwi-Seong;Ko, Haeng-Zin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2067_2068
    • /
    • 2009
  • Resistivity changes and intermetallic growth after thermal aging of Matter tin-plated copper sheet for current collector in fuel cell were investigated to survey the diffusion of Cu into Sn in interface and surface. The results show that the intermetallic growth and resistivity depended on thermal aging temperature and dwell time. In Sn plate on a Cu substrate, $Cu_6Sn_5({\mu})$ and $Cu_3Sn({\varepsilon})$ intermetallics layer were formed at plate/substrate interface. $Cu_6Sn_5({\mu})$ intermetallics layer gradually changed $Cu_3Sn({\varepsilon})$. Moreover Cu get through Sn layer and it was diffused in the surface at $200^{\circ}C$. On the other hand, only $Cu_3Sn({\varepsilon})$ intermetallics layer were formed at plate/substrate interface at $300^{\circ}C$. Consequently, the intermetallics formation, thermal condition and oxidation of surface, causes increase in the resistivity of Tin-plated copper sheet.

  • PDF

Analysis of Slot Leakage Reactance of Submersible Motor with Closed Slots during Starting Transient Operation

  • Bao, Xiaohua;Di, Chong;Fang, Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.135-142
    • /
    • 2016
  • Generally, closed slots are adopted to reduce the water friction loss in both the stator and the rotor of water filling submersible motor due to the special environment of operation. One of the obvious differences between the traditional induction motors and water filling submersible motors is that the submersible motors only need relatively smaller starting torque. This paper aims to analyze the slot leakage reactance of water filling submersible motor during starting transient operation. An improved analytical method which considered the magnetic saturation of the slot bridge and the skin effect of rotor bars is proposed. The slot permeance factor which has a direct impact on the slot leakage reactance is calculated. Then finite element models with different stator slot types are constructed and search coils are introduced to measure the slot flux linkage. Moreover, the starting performances of the models with two typical stator slots are compared and the flux leakage characteristics are obtained. Finally, the results obtained by finite element method are very close to the results obtained by analytical method.

On the Detection of Induction-Motor Rotor Fault by the Combined “Time Synchronous Averaging-Discrete Wavelet Transform” Approach

  • Ngote, Nabil;Ouassaid, Mohammed;Guedira, Said;Cherkaoui, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2315-2325
    • /
    • 2015
  • Induction motors are widely used in industrial processes since they offer a very high degree of reliability. But like any other machine, they are vulnerable to faults, which if left unmonitored, might lead to an unexpected interruption at the industrial plant. Therefore, the condition monitoring of the induction motors have been a challenging topic for many electrical machine researchers. Indeed, the effectiveness of the fault diagnosis and prognosis techniques depends very much on the quality of the fault features selection. However, in induction-motor drives, rotor defects are the most complex in terms of detection since they interact with the supply frequency within a restricted band around this frequency, especially in the no-loaded case. To overcome this drawback, this paper deals with an efficient and new method to diagnose the induction-motor rotor fault based on the digital implementation of the monitoring algorithm based on the association of the Time Synchronous Averaging technique and Discrete Wavelet Transform. Experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the combined “Time Synchronous Averaging – Discrete Wavelet Transform” approach.