• Title/Summary/Keyword: motor neurons

Search Result 181, Processing Time 0.04 seconds

Localization of the Neurons Projecting to the Gallbladder Meridian (족소양담경(足少陽膽經)에서 투사(投射)되는 신경원(神經元)의 표지부위(標識部位)에 대한 연구(硏究))

  • Ryuk Sang-Won;Lee Kwang-Gyu;Lee Sang-Ryoung;Kim Jum-Young;Lee Chang-Hyun;Lee Bong-Hee
    • Korean Journal of Acupuncture
    • /
    • v.17 no.1
    • /
    • pp.101-121
    • /
    • 2000
  • The purpose of this morphological studies was to investigate the relation to the meridian, acupoint and nerve. The common locations of the spinal cord and brain projecting to the the gallbladder, GB34 and common peroneal nerve were observed following injection of transsynaptic neurotropic virus, pseudorabies virus(PRV), into the gallbladder, GB34 and common peroneal nerve of the rabbit. After survival times of 96 hours following injection of PRV, the thirty rabbits were perfused, and their spinal cord and brain were frozen sectioned($30{\mu}m$). These sections were stained by PRV immunohistochemical staining method, and observed with light microscope. The results were as follows: 1. In spinal cord, PRV labeled neurons projecting to the gallbladder, GB34 and common peroneal nerve were founded in thoracic, lumbar and sacral spinal segments. Densely labeled areas of each spinal cord segment were founded in lamina V, VII, X, intermediolateral nucleus and dorsal nucleus. 2. In medulla oblongata, The PRV labeled neurons projecting to the gallbladder, GB34 and common peroneal nerve were founded in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, rostroventrolateral reticular nucleus, medullary reticular nucleus, dorsal motor nucleus of vagus nerve, nucleus tractus solitarius, raphe obscurus nucleus, raphe pallidus nucleus, raphe magnus nucleus, gigantocellular nucleus, lateral paragigantocellular nucleus, principal sensory trigeminal nucleus and spinal trigeminal nucleus. 3. In Pons, PRV labeled neurons were parabrachial nucleus, Kolliker-Fuse nucleus and cochlear nucleus. 4. In midbrain, PRV labeled neurons were founded in central gray matter and substantia nigra. 5. In diencephalon, PRV labeled neurons were founded in lateral hypothalamic nucleus, suprachiasmatic nucleus and paraventricular hypothalamic nucleus. 6. In cerebral cortex, PRV labeled neuron were founded in hind limb area.This results suggest that PRV labeled common areas of the spinal cord projecting to the gallbladder, GB34 and common peroneal nerve may be first-order neurons related to the somatic sensory, viscero-somatic sensory and symapathetic preganglionic neurons, and PRV labeled common area of the brain may be first, second and third-order neurons response to the movement of smooth muscle in gallbladder and blood vessels.These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory system monitoring the internal environment, including both visceral sensation and various chemical and physical qualities of the bloodstream. The present morphological results provide that gallbladder meridian and acupoint may be related to the central autonomic pathways.

  • PDF

Adaptive FNN Controller for High Performance Control of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 적응 FNN 제어기)

  • 이정철;이홍균;정동화
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.569-575
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control Performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation. and steady- state accuracy and transient response.

Motor Neuron Disease and Stem Cell Approach for Its Remediation

  • Kim, Jong Deog;Bhardwaj, Jyoti;Chaudhary, Narendra;Seo, Hyo Jin
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.269-274
    • /
    • 2013
  • Motor neuron disease (MND) is a fatal neurodegenerative disorder caused by progressive and selective degeneration of motor neurons (MNs). Because of the versatile nature, stem cells have the potential to repair or replace the degenerated cells. In this review, we discussed stem cell based therapies including the use of embryonic stem cells (ESCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs) and genetically engineered cells to produce the neurotrophic factors for the treatment of MND. To achieve this goal, the knowledge of specificity of the cell target, homing and special markers are required.

High Performance of Induction Motor Drive with HAl Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.570-572
    • /
    • 2005
  • This paper is proposed adaptive hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Computational Model of a Mirror Neuron System for Intent Recognition through Imitative Learning of Objective-directed Action (목적성 행동 모방학습을 통한 의도 인식을 위한 거울뉴런 시스템 계산 모델)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.606-611
    • /
    • 2014
  • The understanding of another's behavior is a fundamental cognitive ability for primates including humans. Recent neuro-physiological studies suggested that there is a direct matching algorithm from visual observation onto an individual's own motor repertories for interpreting cognitive ability. The mirror neurons are known as core regions and are handled as a functionality of intent recognition on the basis of imitative learning of an observed action which is acquired from visual-information of a goal-directed action. In this paper, we addressed previous works used to model the function and mechanisms of mirror neurons and proposed a computational model of a mirror neuron system which can be used in human-robot interaction environments. The major focus of the computation model is the reproduction of an individual's motor repertory with different embodiments. The model's aim is the design of a continuous process which combines sensory evidence, prior task knowledge and a goal-directed matching of action observation and execution. We also propose a biologically inspired plausible equation model.

Effect of Tetramethylpyrazine on Neuronal Apoptosis in Spinal Cord Compression Injury of Rats (Tetramethylpyrazine이 흰쥐 척수압박손상의 신경세포 자연사에 미치는 영향)

  • Jo, Jong-Jin;Kim, Seung-Hwan;Lee, Joon-Seok;Shin, Jung-Won;Kim, Seong-Joon;Sohn, Nak-Won
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Objectives : The pathophysiology of acute spinal cord injury(SCI) may be divided into primary and secondary mechanisms of injury. The secondary mechanism involves free radical formation, excitotoxicity, inflammation and apoptotic cell death, and sets in minutes after injury and lasts for weeks or months. During this phase the spinal tissue damages are aggravated. Therefore, secondary mechanisms of injury serve as a target for the development of neuroprotective drug against SCI. The present study investigated the effect of tetramethylpyrazine(TMP), an active ingredient purified from the rhizome of Ligusticum wallichii(川芎, chuanxiong), on neuronal apoptosis in spinal cord compression injury in rats. Methods : SCI was subjected to rats by a static compression method(35 g weight, 5 mins) and TMP was treated 3 times(30 mg/kg, i.p.) during 48 hours after the SCI. Results : TMP ameliorated the tissue damage in peri-lesion of SCI and reduced TUNEL-labeled cells both in gray matter and in white matter significantly. TMP also attenuated Bax-expressed motor neurons in the ventral horn and preserved Bcl-2-expressed motor neurons. Conclusions : These results indicate that TMP plays a protective role in apoptotic cell death of neurons and oligodendrocytes in spinal cord injury. Moreover, it is suggested that TMP and TMP-containing chuanxiong may potentially delay or protect the secondary spinal injury.

Effects of Motor Skill Learning on Balance and Coordination in Excitoxicity Induced Cerebellar Injury Model of Rat (흥분독성 소뇌손상 백서모델에서 운동기술학습이 균형 및 협응력에 미치는 영향)

  • Kim, Gi-Do;Min, Kyung-Ok;Shim, Jae-Hwan;Jeong, Jae-Young;Kim, Young-Eok;Kim, Kyung-Yoon;Kim, Gye-Yeop;Sim, Ki-Cheol;Kim, Eun-Jung;Nam, Ki-Won
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.3
    • /
    • pp.455-465
    • /
    • 2010
  • Purpose : This study is intended to examine the motor skill learning on balance and coordination in the cerebellar injured rats by 3AP. Methods : This study selected 60 Sprague-Dawley rats of 8 weeks. Experiment groups were divided into four groups and assigned 15 rats to each group. Group I was a normal control group(induced by saline); Group II was a experimental control group(cerebellar injured by 3AP); Group III was a group of motor skill learning after cerebellar injured by 3AP; Group IV was a group of treadmill exercise after cerebellar injured by 3AP. In each group, motor performance test, histologic observations, synaptophysin expression and electron microscopy observation were analyzed. Results : In motor performance test, the outcome of group II was significantly lower than the group III, IV(especially group III)(p<.001). In histological finding, the experimental groups were destroy of dendrities and nucleus of cerebellar neurons. Group III, IV were decreased in degeneration of cerebellar neurons(especially group III). In immunohistochemistric response of synaptophysin in cerebellar cortex, experimental groups were decreased than group I. Group III's expression of synaptophysin was more increased than group II, IV. In electron microscopy finding, the experimental groups were degenerated of Purkinje cell. Conclusion : These result suggest that improved motor performance by motor skill learning after harmaline induced is associated with dynamically altered expression of synaptophysin in cerebellar cortex and that is related with synaptic plasticity.

Differential changes of nicotinamide adenine dinucleotide phosphate-diaphorase, neuropeptide Y and vasoactive intestinal peptide in the cerebral cortex of the rat after repeated electroacupuncture

  • Kim, Yong-Suk;Kim, Jong-In;Kim, Chang-Hwan;Yoo, Jin-Hwa;Huh, Young-Buhm
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.13-18
    • /
    • 2005
  • This study was undertaken to investigate the effects of electroacupuncture(EA) on Choksamni(ST36), a well-known acupuncture site, on nicotinamide adenine dinucleotide phosphate-diaphorase(NADPH-d), neuropeptide Y(NPY) and vasoactive intestinal peptide(VIP) in the cerebral cortex of spontaneously hypertensive rats(SHR). EA on Choksamni was applied using 2Hz electrical biphasic pulses of 10min, 3 times a week for a total of 10 sessions. Thereafter we evaluated changes in NADPH-d-positive neurons histochemically and changes in NPY and VIP-positive neurons immunohistochemically. The optical density of NADPH-d-positive neurons in the Choksamni group was significantly lower in all areas of the cerebral cortex than in the control group. However, the optical density of NPY-positive neurons in the Choksamni group was similar to that of the controls in most areas of the cerebral cortex, with the exception of the primary motor and visual cortices. The optical density of VIP-positive neurons in the Choksamni group was significantly decreased as compared to the control group in most areas of the cerebral cortex, with the exception of the cingulate cortex. The present results demonstrated that EA on Choksamni changes the activity of the NO system, and that stimulation at the same level, causes selective changes within the peptidergic system in the cerebral cortex of SHR.

  • PDF

Zinc-enriched (ZEN) Terminals in Onuf's Nucleus Innervating External Urethral Sphincter: HRP Tracing Method and Zinc Selenium Autometallography (바깥요도조임근을 지배하는 Onuf 핵에서 관찰된 Zinc 함유 신경종말: HRP 추적법 및 zinc selenium 조직화학법)

  • Lee, Bo-Ye;Kim, Yi-Suk;Lee, Boeb-Y.;Lee, Hyun-Sook;Tak, Gye-Rae;Lee, Young-Il;Lee, Jeoug-Yeol;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.36 no.4
    • /
    • pp.299-305
    • /
    • 2006
  • Onuf's nucleus, which is located in the ventral horn, has been known to innervate the striated muscles of the urethral and anal sphincter muscles via the pudendal nerve Onuf's nuclei are resistant to pathologic condition such as poliovirus. The reason why the motor neurons in Onuf's nucleus are less degenerated is not certain until now. The present study aims at updating the microscopical characteristics including its location the Onuf's nucleus innervating the external urethral sphincter, and ultrastructures of the zinc-enriched (ZEN) terminals synaptically-contacting with Onuf's motor neurons in the rat spinal gray matter by using HRP tracing method and zinc selenium autometallography, respectively. Based on HRP tracing method, Onuf's nuclei were located adjacent lateral dendritic projections of the ventral horn. Their shape was almost round at lumbar level, but oval at sacral segment of spinal cord. In size, their somata were smaller than that of other motor nuclei. In AMG stained sections, Onuf's nuclei were innervated by highly concentrated ZEN terminals, and contained small and middle-sized ZEN, but totally void of large ZEN terminals. AMG silver grains were confined to presynaptic ZEN terminals against dendritic elements and somata of the Onuf's motor neurons. A majority of the ZEN terminals contained flattened synaptic vesicles and made symmetrical synaptic specializations.

Review of Effect of the Stretch Stimulus on Muscle Contraction Facilitation (신장 자극이 근 수축 촉진에 미치는 영향에 관한 고찰)

  • Kim, Mi-hyun;Bae, Sung-soo;Choi, Jae-won
    • PNF and Movement
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 2003
  • Objectives: The purpose of this article is to summarize the effect of stretch stimulus on muscle contraction facilitation. Methods : Some studies of the stretch reflex. ${\gamma}-motor$ system, and the effect of stretch stimulus on muscle activation were reviewed. Results : To facilitate muscle contraction, before the movement is started, the prime mover is in stretched position. The patient must be instructed to occur voluntary muscle contraction after quick stretching. It elicits the functional stretch reflex to produce a more powerful and functional contraction. The intensity of muscle contraction depends on two ways. One is firing rate of ${\alpha}-motor$ neuron by sensory information from the periphery induced in stretched position and stretch reflex. The other is excitation level of the cortical motor area and the corresponding motor neurons. Conclusions: To activate central nervous system and to increase firing rate of ${\alpha}-motor$ neuron. the therapist should apply quick stretch for the patient with stretched position and the patient should make voluntary muscle contraction.

  • PDF