References
- Anastasio TJ. A pattern correlation model of vestibulo-ocular reflex habituation. Neural Netw. 2001;14(1):1-22. https://doi.org/10.1016/S0893-6080(00)00082-4
- Anderson BJ, Alcantara AA, Greenough WT. Motorskill learning: changes in synaptic organization of the rat cerebellar cortex. Neurobiol Learn Mem. 1996;.66(2):221-9. https://doi.org/10.1006/nlme.1996.0062
- Anderson WA, Flumerfelt BA. A light and electron microscopic study of the effects of 3-acetylpyridine intoxication on the inferior olivary complex and cerebellar cortex. J Comp Neurol. 1980;190(1): 157-74. https://doi.org/10.1002/cne.901900111
- Beitz AJ, Saxon D. Harmaline-induced climbing fiber activation causes amino acid and peptide release in the rodent cerebella cortex and a unique temporal pattern of Fos expression in the olivo-cerebellar pathway. J Neurocytol. 2004;33(1):49-74.
- Benson DL, Schnapp LM, Shapiro L et aI. Making memories stick: cell-adhesion molecules in synaptic plasticity. Trends Cell BioI. 2000;10(11):473-82. https://doi.org/10.1016/S0962-8924(00)01838-9
- Carro E, Trejo JL, Busiguina S et aI. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci. 2001 ;21(15):5678-84.
- Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002;25(6):295-301. https://doi.org/10.1016/S0166-2236(02)02143-4
- Cui W, Allen ND, Skynner M et aI. Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia. 2001 ;34(4):272-82. https://doi.org/10.1002/glia.1061
- Desclin JC, Colin F. The olivocerebellar system. II. Some ultrastructural correlates of inferior olive destruction in the rat. Brain Res. 1980;187(1): 29-46. https://doi.org/10.1016/0006-8993(80)90492-8
- Devi SA, Kiran TR. Regional response in antioxidant system to exercise training and dietary vitamin E in aging rat brain. Neurobiol Aging. 2004;25(4): 501-8. https://doi.org/10.1016/S0197-4580(03)00112-X
- Doble A. The role of excitotoxicity in neurodegenerative disease: Implication for therapy. Pharmacol Ther. 1999;81(3):163-221. https://doi.org/10.1016/S0163-7258(98)00042-4
- Federmeier KD, Kleim JA, Greenough WT. Learninginduced multiple synapse fonnation in rat cerebellar cortex. Neurosci Lett. 2002;332(3):180-4. https://doi.org/10.1016/S0304-3940(02)00759-0
- Fernandez-Chacon R, Konigstorfer A, Gerber SH et al. Synaptotagmin I fimctions as a calcirnn regulator of release probability. Nature. 2001;410(6824): 41-9. https://doi.org/10.1038/35065004
- Frick KM, Fernandez SM Enrichment enhances spatial memory and increase synaptophysin levels in aged female mice. Neurobiol Aging. 2003;24 (4):615-26. https://doi.org/10.1016/S0197-4580(02)00138-0
- Gasbarri A, Pompili A, Pacittie C et al. Comparative effects of lesions to the ponto-cerebellar and olivocerebellar pathways on motor and spatial learning in the rat. Neuroscience. 2003; 116:1131-40. https://doi.org/10.1016/S0306-4522(02)00780-7
- Giaquinta G, Casabona A, Valle MS et al. Spinocerebellar Purkinje cell and rat forelimb postures: a direction-dependent activity. Neurosci Lett 1998; 245(2):81-4. https://doi.org/10.1016/S0304-3940(98)00185-2
- Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994;17:31-108. https://doi.org/10.1146/annurev.ne.17.030194.000335
- Janahmadi M, Goudarzi I, Kaffashian MR et al. Co-treatment with riluzole, a neuroprotective drug, ameliorates the 3-acetylpyrine-induced neurotoxicity in cerebellar Purkinje neurons of rats: behavioral and electrophysiological evidence. Neurotoxicology. 2009;30(3):393-402. https://doi.org/10.1016/j.neuro.2009.02.014
- Javitt DC. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamineglutamate interactions. Int Rev Neurobiol. 2007; 78:69-108. https://doi.org/10.1016/S0074-7742(06)78003-5
- Jones TA, Chu CJ, Grande LA et al. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci. 1999; 19(22): 10153-63.
- Kleim JA, Swain RA, Armstrong KA et al. Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiol Learn Mem. 1998;69(3):274-89. https://doi.org/10.1006/nlme.1998.3827
- Kleim JA, Markham JA, Vij K et al. Motor learning induces astrocytic hypertrophy in the cerebellar cortex. Behav Brain Res. 2007;178(2): 244-9. https://doi.org/10.1016/j.bbr.2006.12.022
- Laurin D, Verreault R, Lindsay J et al. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol. 2001; 58(3):498-504. https://doi.org/10.1001/archneur.58.3.498
- Light KE, Brown DP, Newton BW et al. Ethanolinduced alterations of neurotrophin receptor expression on Purkinje cells in the neonatal rat cerebellrnn. Brain Res. 2002;924(1):71-81. https://doi.org/10.1016/S0006-8993(01)03224-3
- Litwak J, Mercugliano M, Chesselet MF et al. Increased glutamic acid decarboxylase(GAD) mRNA and GAD activity in cerebellar Purkinje cell following lesions-induced increased in cell firing. Neurosci Lett. 1990;116(1-2):179-83. https://doi.org/10.1016/0304-3940(90)90406-Y
- Luscher C, Nicoll RA, Malenka RC et al. Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci. 2000;3(6): 545-50. https://doi.org/10.1038/75714
- Mauk MD, Medina JF, Nores WL et al. Cerebellar function: coordination, learning or timing? Curr BioI. 2000; 10(14):522-5. https://doi.org/10.1016/S0960-9822(00)00584-4
- Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist. 2004;10(3):247-59. https://doi.org/10.1177/1073858404263517
- Newlands SD, Perachio AA. Central projections of the vestibular nerve: a review and single fiber study in the Mongolian gerbil. Brain Res Bull. 2003;60(5-6):475-95. https://doi.org/10.1016/S0361-9230(03)00051-0
- Perciavalle V, Bosco G, Poppele R Correlated activity in the spinocerebellum is related to spinal timing generators. Brain Res. 1995;695(2): 293-7.
- Prins ML, Povlishock JT, Phillips LL. The effects of combined fluid percussion traumatic brain injury and unilateral entorhinal deafferentation on the juvenile rat brain. Brain Res Dev Brain Res. 2003; 140(1 ):93-104. https://doi.org/10.1016/S0165-3806(02)00588-6
- Rema V, Ebner FF. Effect of enriched environment rearing on impairments in cortical excitability and plasticity after prenatal alcohol exposure. J Neurosci. 1999;19(24): 10993-1006.
- Remple MS, Bruneau RM, VandenBerg PM et al. Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization. Behav Brain Res. 2001;123(2):133-41. https://doi.org/10.1016/S0166-4328(01)00199-1
- Sanes JN. Neocortical mechanisms in motor learning. Curr Opin Neurobiol. 2003;13(2):225-31. https://doi.org/10.1016/S0959-4388(03)00046-1
- Seoane A, Apps R, Balbuena E et al. Differential effects of trans-crotononitrile and 3-acetylpyridine on inferior olive integrity and behavioral performance in the rat. Eur J Neurosci. 2005;22(4):880-94. https://doi.org/10.1111/j.1460-9568.2005.04230.x
- Sotelo C, Alvarado-Mallart RM, Frain M et al. Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J Neurosci. 1994;14(1):124-33.
- Steward O, Worley P. Local synthesis of proteins at synaptic sites on dendrites: role in synaptic plasticity and memory consolidation? Neurobiol Learn Mem. 2002;78(3):508-27. https://doi.org/10.1006/nlme.2002.4102
- Traystman RJ. Animal models of focal and global cerebral ischemia. ILAR J. 2003;44(2):85-95. https://doi.org/10.1093/ilar.44.2.85
- van-Praag H, Kempermann G, Gage FH. Neural consequences of environmental enrichment. Nat Rev Neurosci. 2000;1(3):191-8.
- Vaynman S, Ying Z, Wu A et al. Coupling energy metabolism with a mechanism to support brainderived neurotrophic factor-medicated synaptic plasticity. Neuroscience. 2006;139(4): 1221-34. https://doi.org/10.1016/j.neuroscience.2006.01.062
- Watson M, McElligott JG. Cerebellar norepinephrine depletion and impaired acquisition of specific locomotor tasks in the rats. Brain Res. 1984;296 (1): 129-38. https://doi.org/10.1016/0006-8993(84)90518-3