• Title/Summary/Keyword: motion-tracking

Search Result 1,225, Processing Time 0.033 seconds

Stereo Object Tracking System using Multiview Image Reconstruction Scheme (다시점 영상복원 기법을 이용한 스테레오 물체추적 시스템)

  • Ko, Jung-Hwan;Ohm, Woo-Young
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.54-62
    • /
    • 2006
  • In this paper, a new stereo object tracking system using the disparity motion vector is proposed. In the proposed method, the time-sequential disparity motion vector can be estimated from the disparity vectors which are extracted from the sequence of the stereo input image pair and then using these disparity motion vectors, the area where the target object is located and its location coordinate are detected from the input stereo image. Basing on this location data of the target object, the pan/tilt embedded in the stereo camera system can be controlled and as a result, stereo tracking of the target object can be possible. From some experiments with the 2 frames of the stereo image pairs having $256\times256$ pixels, it is shown that the proposed stereo tracking system can adaptively track the target object with a low error ratio of about 3.05 % on average between the detected and actual location coordinates of the target object.

Human Motion Tracking based on 3D Depth Point Matching with Superellipsoid Body Model (타원체 모델과 깊이값 포인트 매칭 기법을 활용한 사람 움직임 추적 기술)

  • Kim, Nam-Gyu
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.255-262
    • /
    • 2012
  • Human motion tracking algorithm is receiving attention from many research areas, such as human computer interaction, video conference, surveillance analysis, and game or entertainment applications. Over the last decade, various tracking technologies for each application have been demonstrated and refined among them such of real time computer vision and image processing, advanced man-machine interface, and so on. In this paper, we introduce cost-effective and real-time human motion tracking algorithms based on depth image 3D point matching with a given superellipsoid body representation. The body representative model is made by using parametric volume modeling method based on superellipsoid and consists of 18 articulated joints. For more accurate estimation, we exploit initial inverse kinematic solution with classified body parts' information, and then, the initial pose is modified to more accurate pose by using 3D point matching algorithm.

Panorama Background Generation and Object Tracking using Pan-Tilt-Zoom Camera (Pan-Tilt-Zoom 카메라를 이용한 파노라마 배경 생성과 객체 추적)

  • Paek, In-Ho;Im, Jae-Hyun;Park, Kyoung-Ju;Paik, Jun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.55-63
    • /
    • 2008
  • This paper presents a panorama background generation and object tracking technique using a Pan-Tilt-Zoom camera. The proposed method estimates local motion vectors rapidly using phase correlation matching at the prespecified multiple local regions, and it makes minimized estimation error by vector quantization. We obtain the required image patches, by estimating the overlapped region using local motion vectors, we can then project the images to cylinder and realign the images to make the panoramic image. The object tracking is performed by extracting object's motion and by separating foreground from input image using background subtraction. The proposed PTZ-based object tracking method can efficiently generated a stable panorama background, which covers up to 360 degree FOV The proposed algorithm is designed for real-time implementation and it can be applied to many commercial applications such as object shape detection and face recognition in various surveillance video systems.

Visual servoing based on neuro-fuzzy model

  • Jun, Hyo-Byung;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.712-715
    • /
    • 1997
  • In image jacobian based visual servoing, generally, inverse jacobian should be calculated by complicated coordinate transformations. These are required excessive computation and the singularity of the image jacobian should be considered. This paper presents a visual servoing to control the pose of the robotic manipulator for tracking and grasping 3-D moving object whose pose and motion parameters are unknown. Because the object is in motion tracking and grasping must be done on-line and the controller must have continuous learning ability. In order to estimate parameters of a moving object we use the kalman filter. And for tracking and grasping a moving object we use a fuzzy inference based reinforcement learning algorithm of dynamic recurrent neural networks. Computer simulation results are presented to demonstrate the performance of this visual servoing

  • PDF

Dynamic tracking control of robot manipulators using vision system (비전 시스템을 이용한 로봇 머니퓰레이터의 동력학 추적 제어)

  • 한웅기;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1816-1819
    • /
    • 1997
  • Using the vision system, robotic tasks in unstructured environments can be accompished, which reduces greatly the cost and steup time for the robotic system to fit to he well-defined and structured working environments. This paper proposes a dynamic control scheme for robot manipulator with eye-in-hand camera configuration. To perfom the tasks defined in the image plane, the camera motion Jacobian (image Jacobian) matrix is used to transform the camera motion to the objection position change. In addition, the dynamic learning controller is designed to improve the tracking performance of robotic system. the proposed control scheme is implemented for tasks of tracking moving objects and shown to outperform the conventional visual servo system in convergence and robustness to parameter uncertainty, disturbances, low sampling rate, etc.

  • PDF

Tracking of an Object using Image Processing and Kalman Filter on the Guidance System (길안내 시스템에서의 영상처리와 칼만필터 이용한 물체추적)

  • 송효신;지창호;배종일;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.500-504
    • /
    • 2002
  • The purpose of this paper is to implement a guidance system for an object on the road. A watch camera equipped on the auto door recognizes the direction for the destination of an object, after that it determines whether opening or closing the door, and then the door is opened automatically, based on the decision. The motion of the moving object is approximated by using the technique of the image processing of tracking images and the affine model. The direction of the moving object is predicted from image information obtained by applying linear Kalman filter to the motion estimation in order to reduce the search region, the moving position, and the direction of the center of the object. Along with the guidance function, the system has the announcing function to the object. The experimental results confirm the veridity and applicability of the proposed system.

  • PDF

Moving object Tracking Using U and FI

  • Song, Hag-hyun;Kwak, Yoon-shik;Kim, Yoon-ho;Ryu, Kwang-Ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.7
    • /
    • pp.1126-1132
    • /
    • 2002
  • In this paper, we propose a new scheme of motion tracking based on fuzzy inference (Fl) and wavelet transform (WT) from image sequences. First, we present a WT to segment a feature extraction of dynamic image . The coefficient matrix for 2-level DWT tent to be clustered around the location of Important features in the images, such as edge discontinuities, peaks, and corners. But these features are time varying owing to the environment conditions. Second, to reduce the spatio-temperal error, We develop a fuzzy inference algorithm. Some experiments are performed 0 testify the validity and applicability of the proposed system As a result, proposed method is relatively simple compared with the traditional space domain method. It is also well suited for motion tracking under the conditions of variation of illumination.

A Study on Center Detection and Motion Analysis of a Moving Object by Using Kohonen Networks and Time Delay Neural Networks

  • Kim, Jong-Young;Hwang, Jung-Ku;Jang, Tae-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.63.5-63
    • /
    • 2001
  • In this paper, moving objects tracking and dynamic characteristic analysis are studied. Kohonen´s self-organizing neural network models are used for moving objects tracking and time delay neural networks are used for dynamic characteristic analysis. Instead of objects brightness, neuron projections by Kohonen Networks are used. The motion of target objects can be analyzed by using the differential neuron image between the two projections. The differential neuron image which is made by two consecutive neuron projections is used for center detection and moving objects tracking. The two differential neuron images which are made by three consecutive neuron projections are used for the moving trajectory estimation.

  • PDF

An Application of Sliding Horizon Control to an Electro- Hydraulic Automotive Seat Simulator

  • Mo, Changki;Sunwoo, Myoungho;Yan, Wenzhen
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.283-291
    • /
    • 2002
  • The paper demonstrates the tracking performance of a sliding horizon feedback/feedforward preview optimal control when applied to a hydraulic motion simulator which has been built to provide a means of replicating the actual ride dynamics of an automobile seat/human system. The design was developed by solving an ordinary differential equation problem instead of a Ricatti equation. Simulation results indicate that the proposed technique has good performance improvement in phase tracking when compared to the classical design methods. It is also found that the controller can be adjusted more easily for robustness due to more tuning parameters.

Contour Model based Non-Rigid Moving Object Tracking using Snake Energy Modification (변형된 스네이크 에너지를 통한 외곽선 모델기반의 비강체 물체 추적)

  • 김자영;이주호;정승도;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2104-2107
    • /
    • 2003
  • In this paper, we propose the method Model based Non-Rigid Moving Object Tracking. Motion based method becomes difficult to predict precisely when motion gets larger, so that we can solve such difficultly with regarding the moving object as a model. In the model based method, it should be concerned about setting initial model and updating its model in each frame. We used SNAKE in a way to set the initial model, and also proposed a modified SNAKE to handle the previous SNAKE problems. Moreover, with the elliptical setting, we made the initializing process automatically which is highly subject to change in measuring the performance of SNAKE. We used the Hausdorff distance to identify models in each frame. Through our experiments, our Proposed algorithm does effective work in Non-Rigid Moving Object Tracking.

  • PDF