• Title/Summary/Keyword: motion planing

Search Result 28, Processing Time 0.021 seconds

An Experimental Study on the Motion Response of a High-Speed Planing Craft in Regular Head Waves (정면 규칙파 중 활주형 고속선의 운동 응답에 대한 실험적 연구)

  • Kim, Dong-Jin;Rhee, Key-Pyo;Hwang, Seung-Hyun;Park, Han-Sol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.373-381
    • /
    • 2009
  • The running attitude of a high-speed planing craft may change significantly depending on its speed in seaway. Other variables that may influence its running attitude are its weight, center of gravity, sea conditions, and so on. In this paper, planing craft model tests were carried out with respect to above variables in SNU towing tank, and vertical motion responses of a planing craft in regular head waves were analyzed. The experimental results in regular waves were compared with those in calm water, and compared with the theoretical estimations. Finally, the effects of running speeds of a planing craft on its motion amplitudes are confirmed.

A Numerical Study on Dynamic Instability Motion Control of Wave-Piercing High-Speed Planing Craft in Calm Water using Side Appendages

  • Kim, Sang-Won;Seo, Kwang-Cheol;Lee, Dong-Kun;Lee, Gyeong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.320-329
    • /
    • 2017
  • In this research, we have calculated characteristics of wave-piercing high-speed planing hull, by using a RANS solver and overset grid method, for comparing with experimental measurements of that and simulating with several appendages, since the computed results of commercial CFD code look reasonable for the prediction of the performances of planing hulls on calm water in planing conditions. As a result, it is confirmed that the dynamic instability phenomena in pitch and heave motions (porpoising) occurred after a certain $Fn_V$, and effectively suppressed using some of appendages, especially the 0.5L spray rail is suppressed to 24-55 % in the pitch motion and 33-55 % in the heave motion. In spray phenomenon, 1L hard chine suppress spray effectively and it is effective to set the angle of appendages to be less than $0^{\circ}$ in order to suppress wave.

Modeling and Simulation of the 6 DOF Motion of a High Speed Planing Hull Running in Calm Sea (정수중을 활주하는 고속선의 6자유도 운동 모델링 및 시뮬레이션)

  • Yoon, Hyeon Kyu;Kang, Namseon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • When a planing hull straightly runs and turns, its floating position and pitch angle are changed depending on its speed, and large transient motion happens. In this paper, six degrees of freedom(6 DOF) equations of motion, which could simulate the motion of a planing hull, are established. Static and dynamic forces in vertical plane are modeled using pre-calculated displacements and metacentric heights depending on various draft, lift under bottom, and vertical damping coefficients which are used to tune the final motion. Hydrodynamic coefficients in horizontal plane at various equilibrium state are calculated by using Lewandowski's empirical formula and the speed-dependent equilibrium state are calculated beforehand by Savitsky's formula. The speed effects are considered by curve-fitting the coefficients at various speed to the polynomials. Accelerating, decelerating and backing, turning, and zig-zag are simulated and compared with the sea trial results, and it is confirmed that the speed reduction, roll, and pitch during such maneuvers of sea trial and simulation are well consistent.

An Experimental Study on the Vertical Motion of a High-Speed Planing Craft in Regular Following Waves (선미 규칙파 중 고속 활주선의 연직면 운동에 대한 실험적 연구)

  • Kim, Dong-Jin;Rhee, Key-Pyo;You, Young-Jun;Park, Han-Sol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.496-507
    • /
    • 2010
  • It is well known that when a high-speed planing craft travels in following seas it experiences long-periodic motions due to low encounter frequency, and it often loses its course keeping stability. Therefore, it is necessary to study the sea-keeping performance and stability of it in the following seas. In this paper, the vertical motions of a planing craft were measured in following regular waves, and the test results were compared with the theoretical results. In the case of the same encounter frequency, non-dimensionalized motion amplitudes become larger as Froude number is higher, and non-dimensionalized motion amplitudes in head waves are larger than those in following waves. The mean values of the motions in following waves are similar to the running attitudes of a craft in calm water at the same Froude number.

Integrated CAD/CAE System for Planing Hull Form Design (활주형 선박의 선형설계를 위한 통합 CAD/CAE 시스템)

  • 김태윤;김동준
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.298-304
    • /
    • 2003
  • In this paper a free-form hull design program and performance prediction program for planing boat is introduced. This program enables the designer to do complex geometric hull shape design on a personal computer and accurately to predict power requirements for a given loading and velocity. For a free form design, Bezier curve model is adopted as a basic representation tool of curves and surfaces, and this program has versatile functions to do fairing jobs with a convenient graphical user interface. After creating a hull form the geometric data is provided in a manner compatible with a variety of analysis tools including 'Motion Analysis(by Zarnick)' for prediction of motion characteristics in regular waves, 'Running Attitude (by Savitsky)' for prediction of the running attitude and required power.

Design of high-speed planing hulls for the improvement of resistance and seakeeping performance

  • Kim, Dong Jin;Kim, Sun Young;You, Young Jun;Rhee, Key Pyo;Kim, Seong Hwan;Kim, Yeon Gyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.161-177
    • /
    • 2013
  • High-speed vessels require good resistance and seakeeping performance for safe operations in rough seas. The resistance and seakeeping performance of high-speed vessels varies significantly depending on their hull forms. In this study, three planing hulls that have almost the same displacement and principal dimension are designed and the hydrodynamic characteristics of those hulls are estimated by high-speed model tests. All model ships are deep-V type planing hulls. The bows of no.2 and no.3 model ships are designed to be advantageous for wave-piercing in rough water. No.2 and no.3 model ships have concave and straight forebody cross-sections, respectively. And length-to-beam ratios of no.2 and no.3 models are larger than that of no.1 model. In calm water tests, running attitude and resistance of model ships are measured at various speeds. And motion tests in regular waves are performed to measure the heave and pitch motion responses of the model ships. The required power of no.1 (VPS) model is smallest, but its vertical motion amplitudes in waves are the largest. No.2 (VWC) model shows the smallest motion amplitudes in waves, but needs the greatest power at high speed. The resistance and seakeeping performance of no.3 (VWS) model ship are the middle of three model ships, respectively. And in regular waves, no.1 model ship experiences 'fly over' phenomena around its resonant frequency. Vertical accelerations at specific locations such as F.P., center of gravity of model ships are measured at their resonant frequency. It is necessary to measure accelerations by accelerometers or other devices in model tests for the accurate prediction of vertical accelerations in real ships.

A Study on the Effects of Weight and Center of Gravity of a Planing Craft on Running Attitude (활주선의 하중 및 무게 중심 위치 변화가 항주 자세에 미치는 영향에 대한 연구)

  • Kim, Dong-Jin;Rhee, Key-Pyo;Park, Han-Sol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.335-342
    • /
    • 2009
  • Motion characteristics of a planing craft are sensitively changed according to its weight and longitudinal center of gravity. In this paper, planing craft model tests were performed in calm water for various test conditions and Froude numbers. Sinkage and trim were measured to analyze the relations between the attitudes of a planing craft and the weight and center of gravity of it. Theoretical formula for the prediction of the attitudes of a prismatic planing hull was modified so that it can be applied to the prediction of the attitudes of a non-prismatic planing hull, and the calculation results by the modified formula were in good agreements with the experimental data.

Theoretical Prediction of Vertical Motion of Planing Monohull in Regular Head Waves - Improvement of Zarnick's Nonlinear Strip Method (선수 규칙파 중 단동 활주선의 연직면 거동 추정 - Zarnick 비선형 스트립 방법의 개선)

  • Zhang, Yang;Yum, Deuk-Joon;Kim, Dong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • In order to predict the motions of a planing hull in waves, it is necessary to accurately estimate the force components acting on the hull such as the hydrodynamic force, buoyancy, and friction, as well as the wave exciting force. In particular, based on strip theory, hydrodynamic forces can be estimated by the summation of the forces acting on each cross-section of the hull. A non-linear strip method for planing hulls was mathematically developed by Zarnick, and his formula has been used to predict the vertical motions of prismatic planing hulls in regular waves. In this study, several improvements were added to Zarnick's formula to predict the vertical motions of warped planing hulls. Based on calm water model test results, the buoyancy force and moment correction coefficients were modified. Further improvements were made in the pile-up correction. Pile-up correction factors were changed according to variations of the deadrise angles using the results found in previous research. Using the same hull form, captive model tests were carried out in other recent research, and the results were compared with the present calculation results. The comparison showed reasonably good agreements between the model tests and present calculations.

A study on Resistance Performance of the High-speed Planing Craft with Spray Strip (Spray Strip부착에 따른 고속 활주형선 저항특성 연구)

  • Park, Chung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.759-764
    • /
    • 2008
  • The planing craft is designed specifically to achieve comparatively high speed on the surface of the water. Most of planing crafts have installed the spray strip in decreasing of wave impaction and improving motion performance of rolling and pitching et al. It is known to reduce the spray and frictional resistance by the effect of lift and improvement of wave profile in high speed. In this paper, the high speed planing crafts with & without spray strip in bottom were performed to compare the resistance performance by model-test. In conclusion, the high speed planing crafts with spray strip in bottom was proved to effect of the resistance decrement of $3.0{\sim}5.0%$.

Integrated dynamics modeling for supercavitating vehicle systems

  • Kim, Seonhong;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.346-363
    • /
    • 2015
  • We have performed integrated dynamics modeling for a supercavitating vehicle. A 6-DOF equation of motion was constructed by defining the forces and moments acting on the supercavitating body surface that contacted water. The wetted area was obtained by calculating the cavity size and axis. Cavity dynamics were determined to obtain the cavity profile for calculating the wetted area. Subsequently, the forces and moments acting on each wetted part-the cavitator, fins, and vehicle body-were obtained by physical modeling. The planing force-the interaction force between the vehicle transom and cavity wall-was calculated using the apparent mass of the immersed vehicle transom. We integrated each model and constructed an equation of motion for the supercavitating system. We performed numerical simulations using the integrated dynamics model to analyze the characteristics of the supercavitating system and validate the modeling completeness. Our research enables the design of high-quality controllers and optimal supercavitating systems.