• Title/Summary/Keyword: motion correction

Search Result 389, Processing Time 0.031 seconds

Deep Sea Three Components Magnetometer Survey using ROV (ROV를 이용한 심해 삼성분자력탐사 방법연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 2011
  • We conducted magnetic survey using IBRV (Ice Breaker Research Vessel) ARAON of KORDI (Korea Ocean Research and Development Institute), ROV (Remotely Operated Vehicle) of Oceaneering Co. and three components vector magnetometer, at Apr., 2011 in the western slope of the caldera of TA25 seamount, the Lau Basin, the southwestern Pacific. The depth ranges of the survey area are from about 900 m to 1200 m, below sea level. For the deep sea magnetic survey, we made the nation's first small deep sea three components magnetometer of Korea. The magnetometer sensor and the data logger was attached with the upper part and lower part of ROV, respectively. ROV followed the planning tracks at 25 ~ 30 m above seafloor using the altimeter and USBL (Ultra Short Base Line) of ROV. The three components magnetometer measured the X (North), Y (East) and Z (Vertical) vector components of the magnetic field of the survey area. A motion sensor provided us the data of pitch, roll, yaw of ROV for the motion correction of the magnetic data. The data of the magnetometer sensor and the motion sensor were recorded on a notebook through the optical cable of ROV and the network of ARON. The precision positions of magnetic data were merged by the post-processing of USBL data of ROV. The obtained three components magnetic data are entirely utilized by finding possible hydrothermal vents of the survey area.

Arthroscopic Shaving Cystectomy of Popliteal Cyst by using Posteromedial Portal (관절경적 후내측 도달법을 이용한 슬와 낭종의 절삭 절제술)

  • Kwak, Kyoung-Duck;Ahn, Sang-Min;Baek, Seung-Il;Jung, Chan-Jong;Roh, Jae-Su
    • Journal of the Korean Arthroscopy Society
    • /
    • v.10 no.2
    • /
    • pp.153-158
    • /
    • 2006
  • Purpose: We evaluated the effectiveness of arthroscopic shaving cystectomy by using posteromedial portal for popliteal cyst with the correction of valvular mechanism. Materials and Methods: We had treated 15 cases of popliteal cyst with arthroscopic shaving cystectomy by using posteromedial portal from April 2004 to June 2005. The mean duration of follow up was 15 months (range: $12{\sim}28$). Functional results were based on the Rauschning and Lindgren criteria. We estimated operative time, time for regaining pain-free full range of motion and checked sonography for recurrence of the cyst at 12 months after the surgery. Results: The functional results by Rauschning and Lindgren criteria were rated Grade 0 or Grade 1 in all cases at last follow up. The average operation time was 45 minutes (range: $35{\sim}70$). All cases regained pain-free full range of motion within five days after surgery and range of motion was also normal at last follow up. There were no recurrence and no walking disturbance in all cases. Conclusion: Arthroscopic shaving cystectomy by using posteromedial portal is one of the effective alternative method of the treatment for popliteal cyst and it is also useful to correct the valvular mechanism.

  • PDF

Enhanced Indoor Localization Scheme Based on Pedestrian Dead Reckoning and Kalman Filter Fusion with Smartphone Sensors (스마트폰 센서를 이용한 PDR과 칼만필터 기반 개선된 실내 위치 측위 기법)

  • Harun Jamil;Naeem Iqbal;Murad Ali Khan;Syed Shehryar Ali Naqvi;Do-Hyeun Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.4
    • /
    • pp.101-108
    • /
    • 2024
  • Indoor localization is a critical component for numerous applications, ranging from navigation in large buildings to emergency response. This paper presents an enhanced Pedestrian Dead Reckoning (PDR) scheme using smartphone sensors, integrating neural network-aided motion recognition, Kalman filter-based error correction, and multi-sensor data fusion. The proposed system leverages data from the accelerometer, magnetometer, gyroscope, and barometer to accurately estimate a user's position and orientation. A neural network processes sensor data to classify motion modes and provide real-time adjustments to stride length and heading calculations. The Kalman filter further refines these estimates, reducing cumulative errors and drift. Experimental results, collected using a smartphone across various floors of University, demonstrate the scheme's ability to accurately track vertical movements and changes in heading direction. Comparative analyses show that the proposed CNN-LSTM model outperforms conventional CNN and Deep CNN models in angle prediction. Additionally, the integration of barometric pressure data enables precise floor level detection, enhancing the system's robustness in multi-story environments. Proposed comprehensive approach significantly improves the accuracy and reliability of indoor localization, making it viable for real-world applications.

An Assessment of the Accuracy of 3 Dimensional Acquisition in F-18 fluorodeoxyglucose Brain PET Imaging (3차원 데이터획득 뇌 FDG-PET의 정확도 평가)

  • Lee, Jeong-Rim;Choi, Yong;Kim, Sang-Eun;Lee, Kyung-Han;Kim, Byung-Tae;Choi, Chang-Woon;Lim, Sang-Moo;Hong, Seong-Wun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.3
    • /
    • pp.327-336
    • /
    • 1999
  • Purpose: To assess the quantitative accuracy and the clinical utility of 3D volumetric PET imaging with FDG in brain studies, 24 patients with various neurological disorders were studied. Materials and Methods: Each patient was injected with 370 MBq of 2-[$^{18}F$]fluoro-2-deoxy-D-glucose. After a 30 min uptake period, the patients were imaged for 30 min in 2 dimensional acquisition (2D) and subsequently for 10 min in 3 dimensional acquisition imaging (3D) using a GE $Advance^{TM}$ PET system, The scatter corrected 3D (3D SC) and non scatter-corrected 3D images were compared with 2D images by applying ROIs on gray and white matter, lesion and contralateral normal areas. Measured and calculated attenuation correction methods for emission images were compared to get the maximum advantage of high sensitivity of 3D acquisition. Results: When normalized to the contrast of 2D images, the contrasts of gray to white matter were $0.75{\pm}0.13$ (3D) and $0.95{\pm}0.12$ (3D SC). The contrasts of normal area to lesion were $0.83{\pm}0.05$ (3D) and $0.96{\pm}0.05$ (3D SC). Three nuclear medicine physicians judged 3D SC images to be superior to the 2D with regards to resolution and noise. Regional counts of calculated attenuation correction was not significantly different to that of measured attenuation correction. Conclusion: 3D PET images with the scatter correction in FDG brain studies provide quantitatively and qualitatively similar images to 2D and can be utilized in a routine clinical setting to reduce scanning time and patient motion artifacts.

  • PDF

Analysis of Respiratory Motional Effect on the Cone-beam CT Image (Cone-beam CT 영상 획득 시 호흡에 의한 영향 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mi-Sun
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2007
  • The cone-beam CT (CBCT) which is acquired using on-board imager (OBI) attached to a linear accelerator is widely used for the image guided radiation therapy. In this study, the effect of respiratory motion on the quality of CBCT image was evaluated. A phantom system was constructed in order to simulate respiratory motion. One part of the system is composed of a moving plate and a motor driving component which can control the motional cycle and motional range. The other part is solid water phantom containing a small cubic phantom ($2{\times}2{\times}2cm^3$) surrounded by air which simulate a small tumor volume in the lung air cavity CBCT images of the phantom were acquired in 20 different cases and compared with the image in the static status. The 20 different cases are constituted with 4 different motional ranges (0.7 cm, 1.6 cm, 2.4 cm, 3.1 cm) and 5 different motional cycles (2, 3, 4, 5, 6 sec). The difference of CT number in the coronal image was evaluated as a deformation degree of image quality. The relative average pixel intensity values as a compared CT number of static CBCT image were 71.07% at 0.7 cm motional range, 48.88% at 1.6 cm motional range, 30.60% at 2.4 cm motional range, 17.38% at 3.1 cm motional range The tumor phantom sizes which were defined as the length with different CT number compared with air were increased as the increase of motional range (2.1 cm: no motion, 2.66 cm: 0.7 cm motion, 3.06 cm: 1.6 cm motion, 3.62 cm: 2.4 cm motion, 4.04 cm: 3.1 cm motion). This study shows that respiratory motion in the region of inhomogeneous structures can degrade the image quality of CBCT and it must be considered in the process of setup error correction using CBCT images.

  • PDF

Analysis of Clinical and Radiographic Outcome of the Reconstructive Surgery for the Cavovarus Foot Deformity (요내반족 변형에 대한 재건수술의 임상적 및 방사선학적 결과 분석)

  • Jung, Hong-Geun;Park, Jae-Yong;Lee, Dong-Oh;Eom, Joon-Sang;Chung, Seung-Hee
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.2
    • /
    • pp.62-67
    • /
    • 2014
  • Purpose: Reconstructive surgeries for equinocavovarus foot deformities are quite variable, including hind-midfoot osteotomy or arthrodesis, soft tissue procedure, tendon transfers, etc. Comprehensive evaluation of the deformity and its etiology is mandatory for achievement of successful deformity correction. Few studies in this field have been reported. We report on the clinical and radiographic outcome of reconstruction for cavovarus foot deformities. Materials and Methods: The study is based on 16 feet with cavovarus foot deformities that underwent bony and soft tissue reconstructive surgery from 2004 to 2008. We evaluated the etiologies, varieties of surgical procedures performed, pain score, functional scores, and patient satisfaction and measured the radiographic parameters. Results: The average age at the time of surgery was 39.4 years old, with a male/female ratio of 9/4 and an average follow-up period of 23.9 months (range, 12~49 months). The etiologies of the cavovarus deformity were idiopathic 7 feet, residual poliomyelitis 5 feet, Charcot-Marie-Tooth disease 2 feet, and Guillain-Barre syndrome and hemiplegia due to cerebrovascular accident sequela 1 foot each. Lateral sliding calcaneal osteotomies were performed in 12 feet (75%), followed by Achilles tendon lengthening and plantar fascia release in 11 feet (69%), and first metatarsal dorsiflexion osteotomy/arthrodesis and tendon transfer in 10 feet (63%). Visual analogue scale pain score showed improvement, from an average of 4.2 to 0.5 points. American Orthopaedic Foot and Ankle Society ankle-hindfoot score showed significant improvement, from 47.8 to 90.0 points (p<0.05). All patients were satisfied. Ankle range of motion improved from $27.5^{\circ}$ to $46.7^{\circ}$. In radiographic measurements, calcaneal pitch angle improved from $19.1^{\circ}$ to $15.8^{\circ}$, Meary angle from $13.0^{\circ}$ to $9.3^{\circ}$, Hibb's angle from $44.3^{\circ}$ to $37.0^{\circ}$, and tibio-calcaneal axis angle from varus $17.5^{\circ}$ to varus $1.5^{\circ}$ Conclusion: We achieved successful correction of cavovarus foot deformities by performing appropriate comprehensive reconstructive procedures with improved functional, radiographic measures and high patient satisfaction.

Current Status of Imaging Physics & Instrumentation In Nuclear Medicine (핵의학 영상 물리 및 기기의 최신 동향)

  • Kim, Hee-Joung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.83-87
    • /
    • 2008
  • Diagnostic and functional imaging device have been developed independently. The recognition that combining of these two devices can provide better diagnostic outcomes by fusing anatomical and functional images. The representative examples of combining devices would be PET/CT and SPECT/CT. Development and their applications of animal imaging and instrumentation have been very active, as new drug development with advanced imaging device has been increased. The development of advanced imaging device resulted in researching and developing for detector technology and imaging systems. It also contributed to develop a new software, reconstruction algorithm, correction methods for physical factors, image quantitation, computer simulation, kinetic modeling, dosimetry, and correction for motion artifacts. Recently, development of MRI and PET by combining them together was reported. True integration of MRI and PET has been making the progress and their results were reported. The recent status of imaging and instrumentation in nuclear medicine is reported in this paper.

Lightweight video coding using spatial correlation and symbol-level error-correction channel code (공간적 유사성과 심볼단위 오류정정 채널 코드를 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.188-199
    • /
    • 2008
  • In conventional video coding, encoder complexity is much higher than that of decoder. However, investigations for lightweight encoder to eliminate motion prediction/compensation claiming most complexity in encoder have recently become an important issue. The Wyner-Ziv coding is one of the representative schemes for the problem and, in this scheme, since encoder generates only parity bits of a current frame without performing any type of processes extracting correlation information between frames, it has an extremely simple structure compared to conventional coding techniques. However, in Wyner-Ziv coding, channel decoding errors occur when noisy side information is used in channel decoding process. These channel decoding errors appear more frequently, especially, when there is not enough correlation between frames to generate accurate side information and, as a result, those errors look like Salt & Pepper type noise in the reconstructed frame. Since this noise severely deteriorates subjective video quality even though such noise rarely occurs, previously we proposed a computationally extremely light encoding method based on selective median filter that corrects such noise using spatial correlation of a frame. However, in the previous method, there is a problem that loss of texture from filtering may exceed gain from error correction by the filter for video sequences having complex torture. Therefore, in this paper, we propose an improved lightweight encoding method that minimizes loss of texture detail from filtering by allowing information of texture and that of noise in side information to be utilized by the selective median filter. Our experiments have verified average PSNR gain of up to 0.84dB compared to the previous method.

A Study on the Distance Error Correction of Maritime Object Detection System (해상물체탐지시스템 거리오차 보정에 관한 연구)

  • Byung-Sun Kang;Chang-Hyun Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.139-146
    • /
    • 2023
  • Maritime object detection systems, which detects small maritime obstacles such as fish farm buoys and visualizes distance and direction, is equipped with a 3-axis gimbal to compensate for errors caused by hull motion, but there is a limit to distance error corrections necessitated by the vertical movement of the camera and the maritime object due to wave motions. Therefore, in this study, the distance error of maritime object detection systems caused by the movement of the water surface according to the external environment is analyzed and corrected using average filter and moving average filter. Random numbers following a Gaussian standard normal distribution were added to or subtracted from the image coordinates to reproduce the rise or fall of the buoy under irregular waves. The distance calculated according to the change of image coordinates, the predicted distance through the average filter and the moving average filter, and the actual distance measured by laser distance meter were compared. In phases 1 and 2, the error rate increased to a maximum of 98.5% due to the changes of image coordinates due to irregular waves, but the error rate decreased to 16.3% with the moving average filter. This error correction capability was better than with the average filter, but there was a limit due to failure to respond to the distance change. Therefore, it is considered that use of the moving average filter to correct the distance error of the maritime object detection system will enhance responses to the real-time distance change and greatly improve the error rate.

SURGICAL CORRECTION OF TORTICOLLIS USING BIPOLAR RELEASE AND Z-PLASTY (Bipolar release와 Z-Plasty를 이용한 선천적 사경증의 치험례)

  • Jeong, Jong-Cheol;Kim, Keon-Jung;Lee, Jeong-Sam;Min, Heung-Ki;Choi, Jae-Sun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.3
    • /
    • pp.388-395
    • /
    • 1996
  • Congenital muscular torticollis(CMT) is a disorder characterized by shortening of at least one of the cervical muscles and tilting of the head to opposite side. The most commonly affected muscle is the sternocleidomastoid muscle. Pathogenesis and etiology of congenital muscular torticollis were not clearly identified, but considered as fetal malposition, birth trauma, vascular accident, heredity, infection and CNS pathology. Untreated congenital muscular torticollis often causes facial asymmetry and This is the rasult of tensional rotation of the face toward affected side. So early treatment may prevent facial and neck asymmetry and limitation of neck movement. There are many treatment methods in CMT, including conservative and operative method, but presently Bipolar release and Z-Plasty of SCM muscle has been introduced when the conservative treatment had failed. The benefits of this method are to preservation of the normal Neck V-contour and improvement of the neck motion. We treated CMT using Bipolar release and Z-plasty in two patients. After that the patients improved on the range of neck motion and maintained the normal V-conture of the neck, so we report two cases of CMT with literatures.

  • PDF