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Abstract Indoor localization is a critical component for numerous applications, ranging from navigation
in large buildings to emergency response. This paper presents an enhanced Pedestrian Dead Reckoning
(PDR) scheme using smartphone sensors, integrating neural network-aided motion recognition, Kalman
filter-based error correction, and multi-sensor data fusion. The proposed system leverages data from
the accelerometer, magnetometer, gyroscope, and barometer to accurately estimate a user's position
and orientation. A neural network processes sensor data to classify motion modes and provide real-time
adjustments to stride length and heading calculations. The Kalman filter further refines these estimates,
reducing cumulative errors and drift. Experimental results, collected using a smartphone across various
floors of University, demonstrate the scheme's ability to accurately track vertical movements and
changes in heading direction. Comparative analyses show that the proposed CNN-LSTM model
outperforms conventional CNN and Deep CNN models in angle prediction. Additionally, the integration
of barometric pressure data enables precise floor level detection, enhancing the system's robustness in
multi-story environments. Proposed comprehensive approach significantly improves the accuracy and
reliability of indoor localization, making it viable for real-world applications.
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1. Introduction

Indoor navigation has become increasingly
essential for various applications, requiring robust
and accurate orientation, velocity, and position
information. PDR(Pedestrian Dead Reckoning)
using low-cost Inertial Measurement Units (IMUs)
in smartphones, comprising magnetometers,
accelerometers, gyroscopes, and barometers, has
emerged as a widely used technique. PDR algorithms
primarily focus on heading estimation, stride length
calculation, and step detection [1]. However,
traditional PDR systems face challenges in accurately
maintaining orientation, especially with complex
movements such as using elevators, walking

which

increased localization errors over time [2].

backward, or sidestepping, leads to

To address these issues, recent advancements
integrate PDR with complementary localization
technologies like computer vision-based systems
(CVBS) and communication technology-based
systems (CTBS), including Bluetooth, Wi-Fi, and
RFID [3][4]. Despite these enhancements, PDR
still suffers from drift due to cumulative errors in
inertial sensor measurements [5][6]. Various techniques,
including Kalman filters and optimization methods,
have been proposed to mitigate these errors by
combining data from multiple sensors [7][8].

Machine learning models, particularly convolutional
neural networks (CNNs) and long short-term
memory networks (LSTMs), have shown promise
in improving PDR by accurately classifying
motion patterns and reducing heading errors.
These models outperform traditional heuristic
methods and provide more reliable estimates by
leveraging time-series data from IMUs [9][10].
Recent studies have demonstrated the effectiveness
of integrating CNNs and bidirectional LSTMs
(BDLSTMs) for
patterns, significantly enhancing PDR accuracy
[11].

This paper introduces a robust PDR system that

recognizing complex motion

integrates CNN and LSTM for improved motion

mode recognition. By employing a Kalman filter
for continuous error correction and fusing data
from accelerometers, magnetometers, gyroscopes,
and barometers, the system significantly enhances
position and orientation estimates. It effectively
handles complex motion patterns and accurately
tracks vertical movements using barometric pressure
data. Experimental validation on a Galaxy S8
smartphone demonstrates the system's superior
performance in diverse scenarios, with comparative
analysis showing that the CNN-LSTM model
outperforms conventional models in angle and

position estimation accuracy.

2. Methodology

The block diagram as shown in Fig. 1 denotes

the information flow in enhanced indoor
localization system. The localization system using
smartphone sensors, including the accelerometer,
magnetometer, and gyroscope. It employs a
network-aided PDR(Pedestrian Dead

Reckoning) system, augmented by a Kalman filter

neural

for error correction and data fusion. The system
improves the accuracy and reliability of indoor
positioning by integrating and processing data
from multiple sources: the accelerometer
(measuring linear acceleration for step detection
and stride length), magnetometer (measuring
magnetic fields for heading direction), gyroscope
rates for orientation

(measuring rotational

tracking), neural network outputs (providing
motion mode recognition and angle correction),
PDR outputs (estimating continuous position
updates based on movement), and the Kalman
filter (fusing and refining data to predict and
correct errors). By combining these diverse data
sources, the system achieves a comprehensive
indoor

and precise estimate of the user's

position and orientation.
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[Fig. 1] Information flow in enhanced indoor
localization based on machine learning for
the pedestrian dead reckoning system.

The architecture depicted in Fig. 2 has several
primary objectives. First, it aims to achieve accurate
motion mode recognition using a neural network
to classify different motion modes, which is
crucial for real-time stride length and heading
adjustments. Second, it seeks to minimize errors
through a Kalman filter, which continuously predicts
and corrects orientation and position estimation
errors, thereby reducing inertial navigation drift.
Third, it enhances the robustness of the PDR
system by incorporating Zero Velocity Update
(ZUPT) and Zero Angular Rate Update (ZARU)
techniques, ensuring accurate positioning during
stationary periods. Fourth, it facilitates real-time
data fusion by integrating data from multiple
sensors to provide a precise estimate of the user’s
position and orientation. Lastly, it aims for adaptive
learning and correction through a learning
module that adjusts angle estimations and stride
length, improving overall system reliability.

This improves the PDR system by enhancing step
detection and stride length estimation, dynamically
correcting heading direction, and reducing cumulative
errors through neural network outputs. The Kalman
filter integration reduces noise and corrects
errors, while ZUPT and ZARU minimize drift and
improve long-term accuracy. Leveraging data
from multiple sensors offers a holistic approach
to movement tracking, and the neural network's
continuous learning capabilities make the PDR

system robust and adaptive to various movements.

2.1 Neural Network-Aided Pedestrian Dead
Reckoning

The PDR system begins by collecting data from
multiple smartphone sensors. The accelerometer
measures linear acceleration along the x, y, and
z axes, which is crucial for detecting steps and
changes in speed. The magnetometer measures
the strength and direction of the magnetic field,
helping determine the heading or direction of
movement. Meanwhile, the gyroscope measures
the rate of rotation around the x, y, and z axes,
providing information on changes in orientation.
Once the raw sensor data is collected, it
undergoes preprocessing to make it suitable for
analysis. Filtering techniques are applied to
reduce noise and smooth the data. Key features
are then extracted from the sensor data, such as
acceleration magnitude, orientation changes, and
frequency components of the movement. These
features serve as the input to the neural network.

The neural network designed for the PDR system
has a specific architecture tailored to process
sensor data. The input layer receives the preprocessed
sensor data features. Several hidden layers then
process this input data, learning to recognize
patterns associated with different types of
pedestrian movements by adjusting their weights
during training. The output layer produces the
classification of the current motion mode, such
as walking, running, or standing.

Training the neural network involves using a
labeled dataset containing sensor data and corresponding
motion modes. This dataset cover various types
of movements and environmental conditions to
ensure comprehensive learning. The neural network
is trained using supervised learning, where it
learns to map input features to the correct
motion mode by minimizing the error between

labels. The
backpropagation algorithm adjusts the weights of

its predictions and the actual
the neural network based on the error gradient,
improving its accuracy over time. In real-time,

the trained neural network continuously receives
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[Fig. 2] Enhanced Indoor Localization Architecture.

live sensor data from the smartphone. It processes
the incoming data to classify the current motion
mode. The identified motion mode is then used
to adjust the PDR calculations. For instance, if
the neural network detects walking, the system
applies walking-specific stride length and step
frequency to update the position.

The classified motion mode informs the system
about the type of movement, allowing it to apply
the appropriate stride length estimation algorithm.
The neural network’s output helps dynamically
adjust the heading based on detected turns and

Initialize the state and
error in process
X, P

changes in direction. Additionally, the continuous
and adaptive nature of the neural network helps
reduce cumulative errors in position and orientation
estimates, ensuring more accurate tracking over
time. By incorporating a neural network, the
PDR system achieves enhanced accuracy through
precise detection of motion modes, leading to
accurate stride length and heading calculations.
The system becomes more robust, with an improved
ability to handle various movement patterns.
Continuous correction and dynamic adjustments

minimize cumulative errors, reducing drift.
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2.2 Integration of Inertial Positioning and
Kalman Filter

The inertial positioning system and Kalman filter
play crucial roles in the overall architecture by
enhancing the accuracy and reliability of the
Pedestrian Dead Reckoning (PDR) system. The inertial
positioning system uses data from accelerometers
and gyroscopes to estimate the user's position
and orientation by tracking movements such as
steps and rotations. However, this system is prone to
accumulating errors over time, known as drift.
To mitigate this, the Kalman filter is employed.
The Kalman filter continuously predicts and
corrects these errors by integrating sensor data
with real-time updates, refining position and
orientation estimates. The inertial positioning
system and Kalman filter work together to ensure
that the estimates remain accurate and stable.
The neural network aids this process by
providing precise motion mode classification and
real-time adjustments to stride length and
heading direction, which are fed into the inertial
positioning system. The Kalman filter uses these
refined inputs to further reduce errors, resulting
in a more robust and adaptive PDR system. This
combined approach leverages the strengths of
each component: the neural network for accurate
motion recognition, the inertial positioning system
for continuous tracking, and the Kalman filter
for error correction, collectively enhancing the
overall performance of the indoor localization

system.

2.3 Experimental Setup and Data Collection

All experiments and data collection were
conducted at Jeju National University (JNU) using
a Galaxy S8 smartphone to gather human activity
data across various floors of the university. The
accelerometer data was sampled at a rate of
333.33 Hz, while the barometer data was sampled at
20 Hz. The comprehensive smartphone-based

dataset encompasses approximately 2.75 hours

of Human Motion Recognition (HMR) data collected
on different floors of JNU. Four participants were
involved in the data collection process, each
carrying a smartphone in their right hand to
record six daily human activities across different
floors. To facilitate the labeling of the raw
smartphone-based sensor (SBS) data, participants
paused for 2-3 seconds when changing activities
and floor levels. This approach made it easier to
label

performed time-series analysis on all motion

the data accurately. Additionally, we

data, identifying distinct activity signal patterns
in each segment based on the amplitude of the
accelerometer and relative changes in pressure

data corresponding to altitude variations.

3. Performance Results and Analysis

Fig. 3 illustrates different motion activities captured
by the accelerometer, each characterized by
distinct acceleration magnitude patterns. The variations
in these patterns, such as the high-frequency
spikes during running and the more stable signals
during stationary activities like working on a
computer, provide essential features for the ML

model within the main architecture.
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[Fig. 3] Activity detection based on varyiyg
acceleration magnitude measurements.

The neural network utilizes these distinct amplitude

patterns to classify various motion activities
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accurately. By learning these patterns during
training, the neural network can recognize and
differentiate activities in real-time, thereby enhancing
the overall Pedestrian Dead Reckoning (PDR) system
by providing precise motion mode classifications
for accurate stride length and heading adjustments.

Fig. 4 presents a comparative analysis of angle
estimation accuracy using different neural network
architectures—CNN, Deep CNN, and the proposed
CNN-LSTM—against the actual angle, without
explicit feature computation. The actual angle is
shown by the solid blue line, while the CNN, Deep
CNN, and CNN-LSTM predictions are represented
by the orange, green, and red dashed lines,
respectively. The proposed CNN-LSTM model closely
aligns with the actual angle, demonstrating its
superior ability to predict angles directly from
raw sensor data by capturing spatial and temporal
This

effectiveness of advanced neural networks in

dependencies. analysis underscores the

enhancing the PDR based localization system,
improving angle estimation accuracy without

manual feature computation.
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[Fig. 4] Comparative analysis of angle estimation
methods without feature computation.

Fig. 5 presents a comparative analysis of angle
estimation accuracy using different neural network
architectures—CNN, Deep CNN, LSTM, bidirectional
LSTM, and the proposed CNN-LSTM—against the
actual angle, with explicit feature computation
involving the rotation matrix. The actual angle is
shown by the solid blue line, while the predictions
from CNN, Deep CNN, LSTM, bidirectional LSTM,

and the proposed CNN-LSTM are represented by
the orange, green, red, purple, and brown lines,

respectively.
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[Fig. 5] Comparative Analysis of Angle Estimation
Methods with Feature Computation (Rotation
Matrix).

The proposed CNN-LSTM model shows a high
degree of alignment with the actual angle,
demonstrating its superior ability to predict
angles accurately by leveraging both raw sensor
data and computed features like the rotation
matrix. This analysis highlights the effectiveness
of combining advanced neural network models
with feature computation to enhance the PDR
system, resulting in more accurate and reliable

angle estimation for indoor localization.

4. Conclusion

This paper presents an advanced PDR system
that significantly enhances indoor localization
accuracy by integrating CNN and LSTM models.
The system employs a Kalman filter for continuous
error correction and fuses data from multiple
smartphone sensors, including accelerometers,
magnetometers, gyroscopes, and barometers.
This multi-sensor data fusion enables precise
estimation of position and orientation, effectively
mitigating drift and cumulative errors. The
system addresses complex motion patterns, such

as elevator usage, walking, running, sidestepping,
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and climbing stairs, which are often challenging
for conventional PDR methods. Experimental
validation using a Galaxy S8 smartphone across
various floors demonstrates the system's superior

performance in accurately tracking vertical

movements and heading direction changes.

Comparative analysis reveals that the proposed
CNN-LSTM model outperforms traditional CNN
and deep CNN models in angle and position
estimation accuracy. This work highlights the
potential of combining advanced neural networks
with traditional PDR components to develop
robust and reliable indoor navigation systems,
providing a foundation for future enhancements

in this field.
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