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Abstract  Indoor localization is a critical component for numerous applications, ranging from navigation
in large buildings to emergency response. This paper presents an enhanced Pedestrian Dead Reckoning
(PDR) scheme using smartphone sensors, integrating neural network-aided motion recognition, Kalman
filter-based error correction, and multi-sensor data fusion. The proposed system leverages data from 
the accelerometer, magnetometer, gyroscope, and barometer to accurately estimate a user's position 
and orientation. A neural network processes sensor data to classify motion modes and provide real-time
adjustments to stride length and heading calculations. The Kalman filter further refines these estimates,
reducing cumulative errors and drift. Experimental results, collected using a smartphone across various
floors of University, demonstrate the scheme's ability to accurately track vertical movements and 
changes in heading direction. Comparative analyses show that the proposed CNN-LSTM model 
outperforms conventional CNN and Deep CNN models in angle prediction. Additionally, the integration 
of barometric pressure data enables precise floor level detection, enhancing the system's robustness in
multi-story environments. Proposed comprehensive approach significantly improves the accuracy and
reliability of indoor localization, making it viable for real-world applications.

Key Words : IoT, Indoor localization, Pedestrian Dead Reckoning, Neural Network, motion recognition, 
and Smartphone Sensors

요  약  실내 위치 측위는 대형 건물에서 내비게이션부터 비상 대응까지 다양한 애플리케이션이다. 본 논문에서는 스마
트폰 센서를 이용하고 신경망 기반 동작 인식, 칼만 필터 기반 오류 수정, 다중 센서 데이터 융합을 통합한 향상된 
PDR(Pedestrian Dead Reckoning) 기반 보행자 실내 위치 측위 기법을 제시한다. 제안된 기법은 가속도계, 자력계,
자이로스코프, 기압계의 데이터를 활용하여 사용자의 위치와 방향을 정확하게 측위하며, 신경망은 센서 데이터를 처리
하여 동작 모드를 분류하고 보폭과 방향 계산에 대한 실시간 조정을 제공한다. 칼만 필터는 이러한 추정치를 더욱 구체
화하여 누적 오류와 드리프트를 줄이며, 대형 건물의 여러 층에서 스마트폰을 사용하여 수집한 실험 결과는 수직 이동
과 진행 방향 변화를 정확하게 추적하는 능력을 보여준다. 성능 비교 분석 결과에서 제안된 CNN-LSTM 모델은 각도 
예측에서 기존 CNN 및 Deep CNN 모델보다 성능이 뛰어난 것으로 나타났으며. 또한 기압 데이터를 통합하여 정확한
바닥 수준 감지가 가능해 다층 환경에서 시스템의 견고성을 향상시켰으며, 이 제안된 접근 방식은 실내 위치 파악의
정확성과 신뢰성을 크게 향상시켜 실제 응용 분야에서 활용 가능성이 높다고 판단된다.

주제어 : IoT, 실내 측위, 보행자 측위 항법, 신경망, 동작 인식 및 스마트폰 센서
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1. Introduction

Indoor navigation has become increasingly 
essential for various applications, requiring robust 
and accurate orientation, velocity, and position 
information. PDR(Pedestrian Dead Reckoning) 
using low-cost Inertial Measurement Units (IMUs) 
in smartphones, comprising magnetometers, 
accelerometers, gyroscopes, and barometers, has 
emerged as a widely used technique. PDR algorithms 
primarily focus on heading estimation, stride length 
calculation, and step detection [1]. However, 
traditional PDR systems face challenges in accurately 
maintaining orientation, especially with complex 
movements such as using elevators, walking 
backward, or sidestepping, which leads to 
increased localization errors over time [2].

To address these issues, recent advancements 
integrate PDR with complementary localization 
technologies like computer vision-based systems 
(CVBS) and communication technology-based 
systems (CTBS), including Bluetooth, Wi-Fi, and 
RFID [3][4]. Despite these enhancements, PDR 
still suffers from drift due to cumulative errors in 
inertial sensor measurements [5][6]. Various techniques, 
including Kalman filters and optimization methods, 
have been proposed to mitigate these errors by 
combining data from multiple sensors [7][8].

Machine learning models, particularly convolutional 
neural networks (CNNs) and long short-term 
memory networks (LSTMs), have shown promise 
in improving PDR by accurately classifying 
motion patterns and reducing heading errors. 
These models outperform traditional heuristic 
methods and provide more reliable estimates by 
leveraging time-series data from IMUs [9][10]. 
Recent studies have demonstrated the effectiveness 
of integrating CNNs and bidirectional LSTMs 
(BDLSTMs) for recognizing complex motion 
patterns, significantly enhancing PDR accuracy 
[11].

This paper introduces a robust PDR system that 
integrates CNN and LSTM for improved motion 

mode recognition. By employing a Kalman filter 
for continuous error correction and fusing data 
from accelerometers, magnetometers, gyroscopes, 
and barometers, the system significantly enhances 
position and orientation estimates. It effectively 
handles complex motion patterns and accurately 
tracks vertical movements using barometric pressure 
data. Experimental validation on a Galaxy S8 
smartphone demonstrates the system's superior 
performance in diverse scenarios, with comparative 
analysis showing that the CNN-LSTM model 
outperforms conventional models in angle and 
position estimation accuracy.

2. Methodology

The block diagram as shown in Fig. 1 denotes 
the information flow in enhanced indoor 
localization system. The localization system using 
smartphone sensors, including the accelerometer, 
magnetometer, and gyroscope. It employs a 
neural network-aided PDR(Pedestrian Dead 
Reckoning) system, augmented by a Kalman filter 
for error correction and data fusion. The system 
improves the accuracy and reliability of indoor 
positioning by integrating and processing data 
from multiple sources: the accelerometer 
(measuring linear acceleration for step detection 
and stride length), magnetometer (measuring 
magnetic fields for heading direction), gyroscope 
(measuring rotational rates for orientation 
tracking), neural network outputs (providing 
motion mode recognition and angle correction), 
PDR outputs (estimating continuous position 
updates based on movement), and the Kalman 
filter (fusing and refining data to predict and 
correct errors). By combining these diverse data 
sources, the system achieves a comprehensive 
and precise estimate of the user’s indoor 
position and orientation.
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[Fig. 1] Information flow in enhanced indoor 
localization based on machine learning for 
the pedestrian dead reckoning system.

The architecture depicted in Fig. 2 has several 
primary objectives. First, it aims to achieve accurate 
motion mode recognition using a neural network 
to classify different motion modes, which is 
crucial for real-time stride length and heading 
adjustments. Second, it seeks to minimize errors 
through a Kalman filter, which continuously predicts 
and corrects orientation and position estimation 
errors, thereby reducing inertial navigation drift. 
Third, it enhances the robustness of the PDR 
system by incorporating Zero Velocity Update 
(ZUPT) and Zero Angular Rate Update (ZARU) 
techniques, ensuring accurate positioning during 
stationary periods. Fourth, it facilitates real-time 
data fusion by integrating data from multiple 
sensors to provide a precise estimate of the user’s 
position and orientation. Lastly, it aims for adaptive 
learning and correction through a learning 
module that adjusts angle estimations and stride 
length, improving overall system reliability.

This improves the PDR system by enhancing step 
detection and stride length estimation, dynamically 
correcting heading direction, and reducing cumulative 
errors through neural network outputs. The Kalman 
filter integration reduces noise and corrects 
errors, while ZUPT and ZARU minimize drift and 
improve long-term accuracy. Leveraging data 
from multiple sensors offers a holistic approach 
to movement tracking, and the neural network's 
continuous learning capabilities make the PDR 
system robust and adaptive to various movements. 

2.1 Neural Network-Aided Pedestrian Dead 
    Reckoning

The PDR system begins by collecting data from 
multiple smartphone sensors. The accelerometer 
measures linear acceleration along the x, y, and 
z axes, which is crucial for detecting steps and 
changes in speed. The magnetometer measures 
the strength and direction of the magnetic field, 
helping determine the heading or direction of 
movement. Meanwhile, the gyroscope measures 
the rate of rotation around the x, y, and z axes, 
providing information on changes in orientation. 
Once the raw sensor data is collected, it 
undergoes preprocessing to make it suitable for 
analysis. Filtering techniques are applied to 
reduce noise and smooth the data. Key features 
are then extracted from the sensor data, such as 
acceleration magnitude, orientation changes, and 
frequency components of the movement. These 
features serve as the input to the neural network.

The neural network designed for the PDR system 
has a specific architecture tailored to process 
sensor data. The input layer receives the preprocessed 
sensor data features. Several hidden layers then 
process this input data, learning to recognize 
patterns associated with different types of 
pedestrian movements by adjusting their weights 
during training. The output layer produces the 
classification of the current motion mode, such 
as walking, running, or standing.

Training the neural network involves using a 
labeled dataset containing sensor data and corresponding 
motion modes. This dataset cover various types 
of movements and environmental conditions to 
ensure comprehensive learning. The neural network 
is trained using supervised learning, where it 
learns to map input features to the correct 
motion mode by minimizing the error between 
its predictions and the actual labels. The 
backpropagation algorithm adjusts the weights of 
the neural network based on the error gradient, 
improving its accuracy over time. In real-time, 
the trained neural network continuously receives 
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[Fig. 2] Enhanced Indoor Localization Architecture.

live sensor data from the smartphone. It processes 
the incoming data to classify the current motion 
mode. The identified motion mode is then used 
to adjust the PDR calculations. For instance, if 
the neural network detects walking, the system 
applies walking-specific stride length and step 
frequency to update the position.

The classified motion mode informs the system 
about the type of movement, allowing it to apply 
the appropriate stride length estimation algorithm. 
The neural network’s output helps dynamically 
adjust the heading based on detected turns and 

changes in direction. Additionally, the continuous 
and adaptive nature of the neural network helps 
reduce cumulative errors in position and orientation 
estimates, ensuring more accurate tracking over 
time. By incorporating a neural network, the 
PDR system achieves enhanced accuracy through 
precise detection of motion modes, leading to 
accurate stride length and heading calculations. 
The system becomes more robust, with an improved 
ability to handle various movement patterns. 
Continuous correction and dynamic adjustments 
minimize cumulative errors, reducing drift.
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2.2 Integration of Inertial Positioning and 
    Kalman Filter 

The inertial positioning system and Kalman filter 
play crucial roles in the overall architecture by 
enhancing the accuracy and reliability of the 
Pedestrian Dead Reckoning (PDR) system. The inertial 
positioning system uses data from accelerometers 
and gyroscopes to estimate the user's position 
and orientation by tracking movements such as 
steps and rotations. However, this system is prone to 
accumulating errors over time, known as drift. 
To mitigate this, the Kalman filter is employed. 
The Kalman filter continuously predicts and 
corrects these errors by integrating sensor data 
with real-time updates, refining position and 
orientation estimates. The inertial positioning 
system and Kalman filter work together to ensure 
that the estimates remain accurate and stable. 
The neural network aids this process by 
providing precise motion mode classification and 
real-time adjustments to stride length and 
heading direction, which are fed into the inertial 
positioning system. The Kalman filter uses these 
refined inputs to further reduce errors, resulting 
in a more robust and adaptive PDR system. This 
combined approach leverages the strengths of 
each component: the neural network for accurate 
motion recognition, the inertial positioning system 
for continuous tracking, and the Kalman filter 
for error correction, collectively enhancing the 
overall performance of the indoor localization 
system.

2.3 Experimental Setup and Data Collection
All experiments and data collection were 

conducted at Jeju National University (JNU) using 
a Galaxy S8 smartphone to gather human activity 
data across various floors of the university. The 
accelerometer data was sampled at a rate of 
333.33 Hz, while the barometer data was sampled at 
20 Hz. The comprehensive smartphone-based 
dataset encompasses approximately 2.75 hours 

of Human Motion Recognition (HMR) data collected 
on different floors of JNU. Four participants were 
involved in the data collection process, each 
carrying a smartphone in their right hand to 
record six daily human activities across different 
floors. To facilitate the labeling of the raw 
smartphone-based sensor (SBS) data, participants 
paused for 2-3 seconds when changing activities 
and floor levels. This approach made it easier to 
label the data accurately. Additionally, we 
performed time-series analysis on all motion 
data, identifying distinct activity signal patterns 
in each segment based on the amplitude of the 
accelerometer and relative changes in pressure 
data corresponding to altitude variations.

3. Performance Results and Analysis

Fig. 3 illustrates different motion activities captured 
by the accelerometer, each characterized by 
distinct acceleration magnitude patterns. The variations 
in these patterns, such as the high-frequency 
spikes during running and the more stable signals 
during stationary activities like working on a 
computer, provide essential features for the ML 
model within the main architecture.

Running

Stationary

Walking

Writing Walking Upstairs

[Fig. 3] Activity detection based on varyiyg 
acceleration magnitude measurements.

The neural network utilizes these distinct amplitude 
patterns to classify various motion activities 
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accurately. By learning these patterns during 
training, the neural network can recognize and 
differentiate activities in real-time, thereby enhancing 
the overall Pedestrian Dead Reckoning (PDR) system 
by providing precise motion mode classifications 
for accurate stride length and heading adjustments.

Fig. 4 presents a comparative analysis of angle 
estimation accuracy using different neural network 
architectures—CNN, Deep CNN, and the proposed 
CNN-LSTM—against the actual angle, without 
explicit feature  computation. The actual angle is 
shown by the solid blue line, while the CNN, Deep 
CNN, and CNN-LSTM predictions are represented 
by the orange, green, and red dashed lines, 
respectively. The proposed CNN-LSTM model closely 
aligns with the actual angle, demonstrating its 
superior ability to predict angles directly from 
raw sensor data by capturing spatial and temporal 
dependencies. This analysis underscores the 
effectiveness of advanced neural networks in 
enhancing the PDR based localization system, 
improving angle estimation accuracy without 
manual feature computation. 

[Fig. 4] Comparative analysis of angle estimation 
methods without feature computation.

Fig. 5 presents a comparative analysis of angle 
estimation accuracy using different neural network 
architectures—CNN, Deep CNN, LSTM, bidirectional 
LSTM, and the proposed CNN-LSTM—against the 
actual angle, with explicit feature computation 
involving the rotation matrix. The actual angle is 
shown by the solid blue line, while the predictions 
from CNN, Deep CNN, LSTM, bidirectional LSTM, 

and the proposed CNN-LSTM are represented by 
the orange, green, red, purple, and brown lines, 
respectively. 

[Fig. 5] Comparative Analysis of Angle Estimation 
Methods with Feature Computation (Rotation 
Matrix).

The proposed CNN-LSTM model shows a high 
degree of alignment with the actual angle, 
demonstrating its superior ability to predict 
angles accurately by leveraging both raw sensor 
data and computed features like the rotation 
matrix. This analysis highlights the effectiveness 
of combining advanced neural network models 
with feature computation to enhance the PDR 
system, resulting in more accurate and reliable 
angle estimation for indoor localization. 

4. Conclusion

This paper presents an advanced PDR system 
that significantly enhances indoor localization 
accuracy by integrating CNN and LSTM models. 
The system employs a Kalman filter for continuous 
error correction and fuses data from multiple 
smartphone sensors, including accelerometers, 
magnetometers, gyroscopes, and barometers. 
This multi-sensor data fusion enables precise 
estimation of position and orientation, effectively 
mitigating drift and cumulative errors. The 
system addresses complex motion patterns, such 
as elevator usage, walking, running, sidestepping, 
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and climbing stairs, which are often challenging 
for conventional PDR methods. Experimental 
validation using a Galaxy S8 smartphone across 
various floors demonstrates the system's superior 
performance in accurately tracking vertical 
movements and heading direction changes. 
Comparative analysis reveals that the proposed 
CNN-LSTM model outperforms traditional CNN 
and deep CNN models in angle and position 
estimation accuracy. This work highlights the 
potential of combining advanced neural networks 
with traditional PDR components to develop 
robust and reliable indoor navigation systems, 
providing a foundation for future enhancements 
in this field.
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