• Title/Summary/Keyword: motion controlling

Search Result 339, Processing Time 0.035 seconds

Experiments of soccer robots system

  • Sugisaka, Masanori;Nakanishi, Kiyokazu;Hara, Masayoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1105-1108
    • /
    • 2003
  • The micro robot soccer playing system is introduced. Studying and learning, evolving in artificial agents are very difficult problem, but on the other hand we think more powerfully challenging task. In our laboratory, this soccer-system studies mainly centered on single agent learning problem. The construction of such experimental system has involved lots of kinds of challenges such as robot designing, vision processing, motion controlling. At last we will give some results showing that the proposed approach is feasible to guide the design of common agents system.

  • PDF

A Friction Compensation Method for Low Speed Servomechanisms (저속 서보메카니즘의 마찰 보상방법)

  • 장흥석;이재응;우영환;한재영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.153-161
    • /
    • 2000
  • In controlling servomechanism, such as X-Y tables, friction is one of the most significant source of tracking error. Existing friction models work well when the direction of the motion does not change. However, when the direction of motion changes such as traversing a circular profile, relatively large tracking errors referred to as 'quadrant glitches' are introduced. In this paper, a new friction model, which has a term that can compensate the effect of the quadrant glitches, is proposed. The performance and effectiveness of the proposed model are evaluated through the experimental work. The results show that the controlling servomechanism with the proposed model completely remove the quadrant glitches.

  • PDF

Four degrees of freedom robot gripper for assembly robots (SCARA robot를 위한 4자유도 end-effector 개발)

  • ;Besant, C.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.511-516
    • /
    • 1991
  • A new end-effector has been devised and the problems resulted from using it with SCARA robots are discussed. The end effector has two modules: one composed of two ultrasonic motors and two encoders for controlling each finger, and the other module composed of two ultrasonic motors and two encoders for controlling the wrist. The wrist module adds two degrees of freedom to the SCARA type robot, which generally has four degrees of freedom. With independent finger actuation and touch sensors, the gripper under computer control can feedback information about part size and part presence. Ultrasonic motors with high torque and slow motion characteristics are used. The principle of ultrasonic motors is explained and the servo characteristics of ultrasonic motors are studied. They are controlled by the general motion controller (Hewlett Packard HCTL-1000) which is linked to an IBM-PC AT.

  • PDF

Multi Axis control system using Embedded Web Server (임베디드 웹 서버를 이용한 다축제어 시스템)

  • 김윤업;주형민;곽군평
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.775-778
    • /
    • 2002
  • In this paper, we've studied multi axis control system using embedded web server which is controlling and monitoring the state data of moors. NanoWit2 Board has been ported Linux Operating System and fabricated Web Sorrel by GCC. Motion controller is used MCS-40 of e-MOTION Tek Co., Ltd. which receiving control signal, controlling motors and sending the state data to Web Server.

  • PDF

Motion-based Controlling 4D Special Effect Devices to Activate Immersive Contents (실감형 콘텐츠 작동을 위한 모션 기반 4D 특수효과 장치 제어)

  • Kim, Kwang Jin;Lee, Chil Woo
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.51-58
    • /
    • 2019
  • This paper describes a gesture application to controlling the special effects of physical devices for 4D contents using the PWM (Pulse Width Modulation) method. The user operation recognized by the infrared sensor is interpreted as a command for 3D content control, several of which manipulate the device that generates the special effect to display the physical stimulus to the user. With the content controlled under the NUI (Natural User Interface) technique, the user can be directly put into an immersion experience, which leads to provision of the higher degree of interest and attention. In order to measure the efficiency of the proposed method, we implemented a PWM-based real-time linear control system that manages the parameters of the motion recognition and animation controller using the infrared sensor and transmits the event.

Nonlinear Control of Residual Say of a Container Crane in the Perspective of Controlling an Underactuated System (불충분한 작동기를 가진 매니퓰레이터의 비선형제어)

  • 김영민;홍금식;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.249-252
    • /
    • 1997
  • In this paper the sway-control problem of a container crane is investigated in the perspective of controlling an underactuated mechanical system. For fast loading/unloading of containers from the ship, quick suppression of the remaining swing motion of the container at the end of each trolley stroke is crucial. Known nonlinearities are fully incorporated by feedback linearization. Robustness is enhanced by variable structure control. Compared with the linear LQ control, much better performance can be obtained.

  • PDF

Intelligent Motion Planner for Redundant Manipulators Controlled by Neuro-Biological Signals

  • Kim, Chang-Hyun;Kim, Min-Soeng;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.845-848
    • /
    • 2003
  • There are many researches on using human neuro-biological signals for various problems such as controlling a mechanical object and/or interfacing human with the computer. It is one of very interesting topics that human can use various instruments without learning specific knowledge if the instruments can be controlled as human intends. In this paper, we proposed an intelligent motion planner for a redundant manipulator, which is controlled by humans neuro-biological signals, especially, EOG (Electrooculogram). We found the optimal motion planner for the redundant manipulator that can move to the desired point. We used neural networks to find the inverse kinematics solution of the manipulator. We also showed the performance of the proposed motion planner with several simulations.

  • PDF

The Distance Communication System by using Intelligent Space

  • Umeda, Hiroo;Yamaguchi, Toru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.62-65
    • /
    • 2003
  • We propose the Distance Communication System that is not only Making Distance Learning Contents but also controlling intellectual moving object. In order to make Distance Learning Contents (Video Contents), we must follow the motion of lecturer. In the former Systems and a person operates Video-Camera because it's not enough to follow the motion, In this research and we make the systems that can match the motion of lecturer naturally. The systems use Intelligent Space software and so the systems recognize lecturer's motion automatically and order Pan/Tilt-Type Camera to follow the motion. And we made possible to operate an intellectual moving object with application of this system.

  • PDF

Underlying Control Strategy of Human Leg Posture and Movement

  • Park, Shinsuk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.649-663
    • /
    • 2004
  • While a great number of studies on human motor control have provided a wide variety of viewpoints concerning the strategy of the central nervous system (CNS) in controlling limb movement, none were able to reveal the exact methods how the movement command from CNS is mapped onto the neuromuscular activity. As a preliminary study of human-machine interface design, the characteristics of human leg motion and its underlying motor control scheme are studied through experiments and simulations in this paper. The findings in this study suggest a simple open-loop motor control scheme in leg motion. As a possible candidate, an equilibrium point control model appears consistent in recreating the experimental data in numerical simulations. Based on the general leg motion analysis, the braking motion by the driver's leg is modeled.

Relative Motion Control Methodology Using the Minimum Relative Error Between Two Systems (두 시스템간의 편차 최소화를 적용한 상대적 동작제어 방법)

  • 김성권
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.994-1000
    • /
    • 2003
  • A new relative motion control methodology for a following system to an independent leading system is proposed for controlling relative position, velocity, and tension etc. It is based on maintaining minimum relative error between two independent systems. The control command of the following system to a leading system is generated by adding the current command and the output of the relative error compensation. The proposed control method is implemented on the experimental equipment which is a wire winding-unwinding system to control the tension of the line. The results show the unwinding system(follower) following the independent motion of the winding system(leader) to control the constant tension of the line in order to keep the roller dancer in reference position. The relative motion control method proposed in this paper can be applied to high precision equipment for unwinding and winding fine wire, fine fiber, and tape etc.