• Title/Summary/Keyword: motion accuracy

Search Result 1,631, Processing Time 0.031 seconds

Verification and improvement of dynamic motion model in MARS for marine reactor thermal-hydraulic analysis under ocean condition

  • Beom, Hee-Kwan;Kim, Geon-Woo;Park, Goon-Cherl;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1231-1240
    • /
    • 2019
  • Unlike land-based nuclear power plants, a marine or floating reactor is affected by external forces due to ocean conditions. These external forces can cause additional accelerations and affect each system and equipment of the marine reactor. Therefore, in designing a marine reactor and evaluating its performance and stability, a thermal hydraulic safety analysis code is necessary to consider the thermal hydrodynamic effects of ship motion. MARS, which is a reactor system analysis code, includes a dynamic motion model that can simulate the thermal-hydraulic phenomena under three-dimensional motion by calculating the body force term included in the momentum equation. In this study, it was verified that the dynamic motion model can simulate fluid motion with reasonable accuracy using conceptual problems. In addition, two modifications were made to the dynamic motion model; first, a user-supplied table to simulate a realistic ship motion was implemented, and second, the flow regime map determination algorithm was improved by calculating the volume inclination information at every time step if the dynamic motion model was activated. With these modifications, MARS could simulate the thermal-hydraulic phenomena under ocean motion more realistically.

The Periodic Moving Average Filter for Removing Motion Artifacts from PPG Signals

  • Lee, Han-Wook;Lee, Ju-Won;Jung, Won-Geun;Lee, Gun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.701-706
    • /
    • 2007
  • The measurement accuracy for heart rate or $SpO_2$ using photoplethysmography (PPG) is influenced by how well the noise from motion artifacts and other sources can be removed. Eliminating the motion artifacts is particularly difficult since its frequency band overlaps that of the basic PPG signal. Therefore, we propose the Periodic Moving Average Filter (PMAF) to remove motion artifacts. The PMAF is based on the quasi-periodicity of the PPG signals. After segmenting the PPG signal on periodic boundaries, we average the $m^{th}$ samples of each period. As a result, we remove the motion artifacts well without the deterioration of the characteristic point.

Motion Capture of the Human Body Using Multiple Depth Sensors

  • Kim, Yejin;Baek, Seongmin;Bae, Byung-Chull
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.181-190
    • /
    • 2017
  • The movements of the human body are difficult to capture owing to the complexity of the three-dimensional skeleton model and occlusion problems. In this paper, we propose a motion capture system that tracks dynamic human motions in real time. Without using external markers, the proposed system adopts multiple depth sensors (Microsoft Kinect) to overcome the occlusion and body rotation problems. To combine the joint data retrieved from the multiple sensors, our calibration process samples a point cloud from depth images and unifies the coordinate systems in point clouds into a single coordinate system via the iterative closest point method. Using noisy skeletal data from sensors, a posture reconstruction method is introduced to estimate the optimal joint positions for consistent motion generation. Based on the high tracking accuracy of the proposed system, we demonstrate that our system is applicable to various motion-based training programs in dance and Taekwondo.

능동제어모세관을 이용한 유정압테이블의 운동정도 향상

  • 송영찬;박천홍;김수태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.250-256
    • /
    • 1997
  • For compensating the error motion of hydrostatic tables, we have introduced a way that the clarance of table is actively controlled corresponding to the amount of error with the nariable capillary,anmed as ACC. In previous paper,through the basic test, it was confirmed that by the use of ACC,the error motion within 2.7 .mu.m of a hydrostatic table could be compensated with the resolution of 27nm, 1/100 contollable range, and with the freqency bandwidth of 5.5Hz structurally. In this paper,we performed practital compensation of the linear and angular motion error of hydrostatic table using ACC. For improving the compensated motion accuracy,iterative control method is put into the control system. The experimental results show that by the simultaneous compensation of error,the linear and angular motion error are improved upto 0.25 .mu.m and 0.4arcsec,which are about 1/10 and 1/3 of the non-compensated motion errors respectively.

Modeling and Motion Control of Piezoelectric Actuator for the Inchworm : Part 2. Motion Control of Inchworm Using Sliding Mode Method (이송자벌레를 위한 압전소자의 모델링 및 운동제어 : 2. 슬라이딩 모드법에 의한 이송자벌레의 운동제어)

  • Kim, Young-Shik;Park, Euncheol;Kim, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.878-884
    • /
    • 2005
  • This paper presents an algorithm for the precision motion control based on the dynamic characteristics of piezoelectric actuators in the inchworm. The dynamic characteristics are identified by the frequency domain modeling technique using the experimental data. For the motion control, the hysteresis behavior is compensated by the inverse hysteresis model. The dynamic stiffness of an inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. The Sliding mode controller and the Kalman filter are designed for motion control of the inch-worm.

3D FACE RECONSTRUCTION FROM ROTATIONAL MOTION

  • Sugaya, Yoshiko;Ando, Shingo;Suzuki, Akira;Koike, Hideki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.714-718
    • /
    • 2009
  • 3D reconstruction of a human face from an image sequence remains an important problem in computer vision. We propose a method, based on a factorization algorithm, that reconstructs a 3D face model from short image sequences exhibiting rotational motion. Factorization algorithms can recover structure and motion simultaneously from one image sequence, but they usually require that all feature points be well tracked. Under rotational motion, however, feature tracking often fails due to occlusion and frame out of features. Additionally, the paucity of images may make feature tracking more difficult or decrease reconstruction accuracy. The proposed 3D reconstruction approach can handle short image sequences exhibiting rotational motion wherein feature points are likely to be missing. We implement the proposal as a reconstruction method; it employs image sequence division and a feature tracking method that uses Active Appearance Models to avoid the failure of feature tracking. Experiments conducted on an image sequence of a human face demonstrate the effectiveness of the proposed method.

  • PDF

Effective Automatic Foreground Motion Detection Using the Statistic Information of Background

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.121-128
    • /
    • 2015
  • In this paper, we proposed and implemented the effective automatic foreground motion detection algorithm that detect the foreground motion by analyzing the digital video data that captured by the network camera. We classified the background as moving background, fixed background and normal background based on the standard deviation of background and used it to detect the foreground motion. According to the result of experiment, our algorithm decreased the fault detection of the moving background and increased the accuracy of the foreground motion detection. Also it could extract foreground more exactly by using the statistic information of background in the phase of our foreground extraction.

An Efficient Multi-level Successive Elimination Algorithm using the Locality in Block (동영상의 블록내 지역성을 이용하는 효율적인 다단계 연속 제거알고리즘)

  • Jung, Soo Mok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.179-187
    • /
    • 2009
  • In this paper, an efficient multi-level successive elimination algorithm using the locality in block was proposed for motion estimation. If SAD(sum of absolute difference) is calculated from large absolute difference values to small absolute difference values, SAD is increased rapidly. So, partial distortion elimination in SAD calculation can be done very early. Hence, the computations of SAD calculation can be reduced. In this paper, an efficient algorithm to calculate SAD from large absolute difference values to small absolute difference values by using the locality in block. Experimental results show that the proposed algorithm is an efficient algorithm with 100% motion estimation accuracy for the motion estimation of motion vectors.

Digital Image Stabilization Based on Edge Detection and Lucas-Kanade Optical Flow (Edge Detection과 Lucas-Kanade Optical Flow 방식에 기반한 디지털 영상 안정화 기법)

  • Lee, Hye-Jung;Choi, Yun-Won;Kang, Tae-Hun;Lee, Suk-Gyu
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.85-92
    • /
    • 2010
  • In this paper, we propose a digital image stabilization technique using edge detection and Lucas-Kanade optical flow in order to minimize the motion of the shaken image. The accuracy of motion estimation based on block matching technique depends on the size of search window, which results in long calculation time. Therefore it is not applicable to real-time system. In addition, since the size of vector depends on that of block, it is difficult to estimate the motion which is bigger than the block size. The proposed method extracts the trust region using edge detection, to estimate the motion of some critical points in trust region based on Lucas-Kanade optical flow algorithm. The experimental results show that the proposed method stabilizes the shaking of motion image effectively in real time.

A Study on MTL Device Design and Motion Tracking in Virtual Reality Environments

  • Oh, Am-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.205-212
    • /
    • 2019
  • Motion tracking and localization devices are an important building block of motion tracking systems in a virtual reality (VR) environment. This study is about improving the accuracy of motion and location for enhancing user immersion in experience type VR environment to position tracking technique. In this study, we propose and test a design of such a device. The module data test of the attitude and heading reference system shows that the implementation with the MPU-9250 sensor is successful and adequate to be used with short operation time. We consider various sensor hardware dependencies of VR, and compare various correction methods and filtering methods to lower the motion to photon (MTP) time that user movement is fully reflected on the display using sensor devices. The Kalman filter is used to combine the accelerometer with the gyroscope in the sensing unit.