The purpose of this study is to analyze the effect of the spread on housing mortgage loans. In particular, this study analyzes how the spread has a decisive effect on housing mortgage loans when a structural change occurs in the spread. For the sake of empirical analysis, this study utilizes the housing mortgage loan, housing mortgage loan interest rate, COFIX interest rate, and spread. The period of analysis is from December 2010 to December 2017. Results of the analysis show that there is a statistically significant structural change in the spread and housing mortgage loans (May and June 2015, respectively). It is estimated that the structural change in the spread has an influence on the structural change in housing mortgage loans. In addition, the effect of the spread on housing mortgage loans is larger than the effect of the COFIX interest rate and the housing mortgage loan interest rate. This indicates that the adjustment of the spread is a significant burden on housing mortgage loans. As economic uncertainties both internally and externally are increasing, pressure on interest rate hikes is also increasing. Considering these circumstances, interest rate hikes will be inevitable in the future. If the base interest rate and the spread increase simultaneously at Korea's current economic level, it will obviously lead to an economic recession as the burden on the repayment of principal and interest of housing mortgage loans will increase. Therefore, it is imperative that financial authorities prepare institutional arrangements in order to protect financial consumers by preventing arbitrary calculation of the spread, which would not be objective and would not be transparent from the banks.
This study deals with a comparative analysis on reverse mortgage loans and mortgage loans in order to pave a path for activation of real estate financing. The fact-revealing analysis was conducted through surveys based on theoretical consideration and advanced researches, which has drawn a range of findings. As the results of this study, the important findings concerning the improvement on the activation of practical housing reverse mortgages are applicable to all real estate, diversifying the tax benefits, and deregulation of 1 house, etc. and findings concerning the improvement to activate mortgage loans are diversifying types of interest rates, diversifying types of repayment, tax benefits for less than 15 years maturity period, and granting benefits(low interest rates, higher loan limits) to low-income households, etc. This study has a significance for providing basic materials in order to accomplish advanced finance policies along with social welfare services as suggesting measures to improve and activate real estate financing through the findings out of the fact-revealing analysis conducted as above.
The emergence of Security Token has revolutionized the way assets are traded, bringing efficiency, transparency, and accessibility to the market. However, the Real Estate Security Token market faces challenges, particularly in terms of liquidity. The CMTO(Collateralized Mortgage Token Obligation) model addresses this issue by introducing a novel approach that combines the benefits of NFT(Non-Fungible Token), STO(Security Token Offering), and CMO(Collateralized Mortgage Obligation) techniques to enhance liquidity and promote investment in Real Estate Security Token. The CMTO framework functions by allowing DABS token investors to leverage their tokens as collateral for loans. These token-collateralized loans are pooled together and form the basis for issuing Sequential CMO named CMTO. The CMTO represent a diversified portfolio of token-collateralized loans, providing investors with options based on their financial goals and risk preferences. By implementing CMTO, the Real Estate Security Token market can overcome liquidity challenges, attract a broader range of investors, and unlock the full potential of digital assets in the real estate industry.
Korean Journal of Construction Engineering and Management
/
v.11
no.5
/
pp.32-40
/
2010
Recent periodical boom and burst of house price have made mortgage lending issues become the main public interest in Korean real estate market. However, because mortgage-lending issues had not been discussed until then, housing market forecasting associated with mortgage lending has been difficult while using an empirical approach. Thus, comprehensive and systematic approach is required as well as validity of mortgage lending policies should be evaluated. In this regard, this research conducts a sensitivity analysis to validate the proposed policies and estimates the effects of current policies on LTV and DTI ratios with a comparison of another policies scenario. A causal loop and sensitivity analysis using system dynamics confirmed that LTV and DTI regulation is strong clout to housing market. However, to prevent transfer of potential mortgage borrowers to nonmonetary institutions, regulations in loans of nonmonetary institutions should be practiced in accompaniment with regulations of primary lending agencies.
Communications for Statistical Applications and Methods
/
v.7
no.2
/
pp.605-616
/
2000
Three primary interests frequently raised by mortgage companies are introduced and the corresponding statistical approaches for the default probability in mortgage companies are examined. Statistical models considered in this paper are time series, logistic regression, decision tree, neural network, and discrete time models. Usage of the models is illustrated using an artificially modified data set and the corresponding models are evaluated in appropriate manners.
Purpose: This study aims to provide implications for the government's housing supply policy by analyzing the factors that determine the type of real estate holding and household debt. This study started from the awareness that the determinants of household debt differ depending on the type of real estate holding. Research design, data and methodology: Real estate ownership type was classified and analyzed into 4 models: model 1 (1 household 1 house and self-resident), model 2 (1 household multiple real estate ownership and self-resident), model 3 (1 household 1 house and rent residence), model 4 (1 household holds a large number of real estate and rent residence). The analysis method used multiple regression analysis. The dependent variable was household total debt. As independent variables, household debt, annual gross household income, financial assets, real estate net assets, annual repayment, demographic & residential characteristics were used. Results: 1) Model 4 has the highest household debt and the highest gross income, Model 2 has the most real estate mortgage loans and real estate net asset, and Model 1 has the highest real estate mortgage payments. 2) The positive factor of common household debt determinants is real estate net assets, and the negative factor is financial assets. 3) It was the net assets of real estate that acted as a positive factor in common for the four models. In other words, the more financial assets, the less household debt. It was analyzed that the more net assets of real estate, the more household debt. The annual repayment of financial liabilities had no influence on household debt, while the annual repayment of loan liabilities and household debt had a positive relationship. Conclusions: 1) It is necessary to introduce benefits and systems that can increase the proportion of household financial asset. Specific alternatives include tax benefits and reduced fees for financial asset investment. 2) In the case where a homeless person prepares one house for one household, it is necessary to prepare various support measures according to the income level. The specific alternative is to give additional points for pre-sale or apply an interest rate cut incentive for mortgage loans.
International conference on construction engineering and project management
/
2009.05a
/
pp.1015-1022
/
2009
Currently, Korean real estate market has experienced cooling down of the business because of the global economic crisis which resulted from the subprime mortgage lending practice. In response, the Korean government has enforced various policies at the base of deregulating real estate speculation, such as increasing Loan to value ratio (LTV) in order to stimulate housing demand and supply. However, these policies seemed to result in deep confusion in the Korean housing market. Furthermore, analysis for housing market forecasting, especially international financial crisis on Korean real estate market, has been partial and fragmentary, therefore comprehensive solution and systematical approach is required to analyze the real estate and real estate financial market including causal nexus between market determining factors. In an integrated point of view, applying the system dynamics modeling, the paper aims at proposing Korean Real Estate and Mortgage market dynamics models based on fundamental principles of housing market determined by supply and demand. We also find the impact of deregulation policies focusing on mortgage loan which is the main factors of policies.
The Journal of the Convergence on Culture Technology
/
v.8
no.4
/
pp.83-89
/
2022
This study analyzed the effect of bank loans on housing prices, classified bank loans into bank total loans, household loans, and real estate mortgage loans, and analyzed housing prices by dividing them into national-level, regional-level, and Seoul-level housing prices. The main analysis results are as follows. First, it was found that the increase in total bank loans significantly increased housing prices across the national-level, regional-level and Seoul-level. Second, it was found that household loans had a positive effect on regional-level housing prices, but were not statistically significant. In addition, the effect of bank loans on regional-level housing prices was found to be relatively small compared to the effect on national-level housing prices. Third, it was found that there was a difference in the effect of bank loans on regional-level housing prices and Seoul-level housing prices. Fourth, inflation and bank total loans had a significant positive effect on regional-level housing prices with a lag in the first quarter, and short-term interest rates had a significant negative effect on Seoul-level housing prices with a lag in the first quarter. Overall, it was found that the effect of bank loans on housing prices had a positive effect about twice that of Seoul-level rather than regional-level.
The Journal of Asian Finance, Economics and Business
/
v.1
no.4
/
pp.5-13
/
2014
This study contributes to addressing the problem of an aging population by providing important information that determines feasible monthly payments for the clients of Chinese reverse mortgage products and by promoting the implementation of reverse mortgages in China. The variables used in this study include mean values obtained from time series data, of the rate of increase of housing prices, and the probability value, interest rate, and mortality rate obtained through the geometric Brownian motion (GBM). For mortality rates, China Life Insurance female mortality rates (2000-2003) were used. This study aims to apply the main variables that affect reverse mortgage products in a monthly payment model based on Chinese financial market conditions, and determine loan values. In this study, Shanghai's reverse mortgage monthly payments, by age levels, were calculated through the loan-to-value (LTV) and payment (PMT) methods to evaluate the value of the reverse mortgages. Based on the optimal combination of the three factors of payment amount, loan interest rates, and the level of acceptance of prices, efforts must be made to extract the best value for the elderly. Only in this way can the interests of both lenders and borrowers be protected, by increasing the market share and economies of scale of the reverse mortgage industry and effectively improving the living standards of the elderly.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.3
/
pp.265-272
/
2019
In this study, we conducted a prediction study to qualitatively identify the continuous growth rate that causes problems every year for deposit bank mortgage loans, identify the characteristic factors that could once again stabilize, and come up with measures for future quantitative analysis of mortgage loans and growth trends. Based on data analysis using the R program, which is widely used for big data analysis, the parameters of ARIMA model (0.1,1)(0.1,1)[12] were found to be most suitable. In these indicators, estimates over the next five years (60 months) increased 4.5% on average. However, this has limitations that do not reflect socio-environmental factors, which require further study of these limitations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.