그림 1. 주택담보대출 월별 변화추세 Fig. 1. Trend of Monthly Housing Mortgage
그림 2. 주택담보대출의 추이 Fig. 2. Trend of Housing Mortgage
그림 3. 예금은행 주택담보대출의 Seasonality, Trend, Random 요소로 시계열 분해 Fig. 3. Time series decomposition of Seasonality, Trend, Random elements of trade volume at housing mortgage
그림 4. Augmented Dickey-Fuller(ADF) 검정 결과 Fig. 4. The result of Augmented Dickey-Fuller(ADF)test
그림 5. 차분과 로그를 취한 후 Augmented Dickey-Fuller(ADF) 검정 결과 Fig. 5. The result of Augmented Dickey-Fuller(ADF)test after difference and log
그림 6. ARIMA 모형의 모수 추정 Fig. 6. Parameter estimation in the ARIMA model
그림 7. 모수 결정 적합성 확인 Fig. 7. confirm assumption about parameter adequacy
그림 8. 2014년부터 2018년 동안 주택담보대출 예측과 실측데이터의 비교 Fig. 8. Comparison of predicted and actual measurements
그림 9. 주택담보대출의 향후 5년 미래 예측 Fig. 9. Forecasting the Future of Housing Mortgage Loans for the Next Five Years
그림 10. 주택담보대출 월별 변화추세 Fig. 10. Trend of Monthly Housing Mortgage
그림 11. 2019년부터 2023년 예측 값의 Seasonality, Trend, Random 요소로 시계열분해 Fig. 11. Time series decomposition of Seasonality, Trend, Random elements of trade volume at housing mortgage forecast of 2013 to 2023
표 1. 주택담보대출의 전년대비 증가율 Table 1. Rate of increase in housing mortgage
표 2. 예금은행 주택담보대출 기초통계 분석 Table 2. The Basic statistical analysis of trade volume at housing mortgage
표 3. 계절 ARIMA 모형 예측 값의 MAPE와 RMSE Table 3. MAPE and RMSE of the seasonal ARIMA model
표 4. 예금은행 주택담보대출 향후 5년에 대한 예측 평균값 Table 4. predicted mean of housing mortgage over the next five years
References
- http://www.fnnews.com/news/201902191751021758
- https://www.yna.co.kr/view/AKR20190223036000002?input=1195m
- Kim Hee Cheul, Hyun-Cheul Shin, "Estimating the Determinants of Loan Amount of Housing Mortgage : A Panel Data Model Approach", korean society of computer and information, Vol.16, No.7, 2011.7.
- Kyu Ho Kang, "Mortgage Loan Prediction: Bayesian Machine Learning Approach", KDIC,2018.19.004,pp.99-129
- JO Jun-Ho, Byon Je-Seop, Kim Hee-Cheul, "Analysis of Global Shipping Market Status and Forecasting the Container Freight Volume of Busan New port using Time-series Model",Journal of Korea institute ofinformation, electronics, and communication technology,v.10 no.4, 2017
- http://www.fnnews.com/news/201902191751021758
- http://kosis.kr/search/search.do "KOSIS National Statistical Table"
- Chang-Beom Kim, "Forecasting the Seaborne Trade Volume using Intervention Multiplicative Seasonal ARIMA and Artificial Neural Network Model", Journal of Korea Port Economics Association, Vol. 31, No.1,pp.5-20, 2015
- https://blog.naver.com/happyrachy/221428771766
- https://anomaly.io/seasonal-trend-decomposition-in-r/
- http://www.dodomira.com/2016/04/21/arima_in_r/
- https://datascienceschool.net/view-notezook/e4b52228ac5749418d51409fdc4f9cef
- https://m.blog.naver.com/PostView.nhn?blogId=risk_girl&logNo=220834418182&proxyReferer=https%3A%2F%2Fwww.google.co.kr%2F
- Jong-San Choi, "Evaluation of Estimation and Forecast Accuracy on Retail Meat Prices by Seasonal Time Series Models", The korean of food preservation Vol.33,No.1,pp.10-13, 2016
- Yoon Yeo Jin, Kim Min Gyu, Lee, Jong Sin "Calculation of Measurement Error and RMSE about Total-station Using Precise Baseline", Journal of the Korean cadastre Information association v.14 no.2 ,pp.99-106,2012
- https://www.statisticshowto.datasciencecentral.com/rmse/