• 제목/요약/키워드: monotone mapping

검색결과 79건 처리시간 0.133초

FIXED POINT THEOREMS OF WEAKLY MONOTONE PREŠIĆ TYPE MAPPINGS IN ORDERED CONE METRIC SPACES

  • Khan, Mohammad Saeed;Shukla, Satish;Kang, Shin Min
    • 대한수학회보
    • /
    • 제52권3호
    • /
    • pp.881-893
    • /
    • 2015
  • In this paper, we introduce the weakly monotone $Pre{\check{s}}i{\acute{c}}$ type mappings in product spaces when the underlying space is an ordered cone metric space. Some fixed point results for such mappings are also proved which generalize and unify several known results in metric and cone metric spaces with normal cone. The results are supported by examples.

RELAXED PROXIMAL POINT ALGORITHMS BASED ON A-AXIMAL RELAXED MONOTONICITY FRAMEWORKS WITH APPLICATIONS

  • Agarwal, Ravi P.;Verma, Ram U.
    • East Asian mathematical journal
    • /
    • 제27권5호
    • /
    • pp.545-555
    • /
    • 2011
  • Based on the A-maximal(m)-relaxed monotonicity frameworks, the approximation solvability of a general class of variational inclusion problems using the relaxed proximal point algorithm is explored, while generalizing most of the investigations, especially of Xu (2002) on strong convergence of modified version of the relaxed proximal point algorithm, Eckstein and Bertsekas (1992) on weak convergence using the relaxed proximal point algorithm to the context of the Douglas-Rachford splitting method, and Rockafellar (1976) on weak as well as strong convergence results on proximal point algorithms in real Hilbert space settings. Furthermore, the main result has been applied to the context of the H-maximal monotonicity frameworks for solving a general class of variational inclusion problems. It seems the obtained results can be used to generalize the Yosida approximation that, in turn, can be applied to first- order evolution inclusions, and can also be applied to Douglas-Rachford splitting methods for finding the zero of the sum of two A-maximal (m)-relaxed monotone mappings.

A HYBRID PROJECTION METHOD FOR COMMON ZERO OF MONOTONE OPERATORS IN HILBERT SPACES

  • Truong, Minh Tuyen
    • 대한수학회논문집
    • /
    • 제32권2호
    • /
    • pp.447-456
    • /
    • 2017
  • The purpose of this paper is to introduce some strong convergence theorems for the problem of finding a common zero of a finite family of monotone operators and the problem of finding a common fixed point of a finite family of nonexpansive in Hilbert spaces by hybrid projection method.

COUPLED FIXED POINT THEOREMS WITH APPLICATIONS

  • Chang, S.S.;Cho, Y.J.;Huang, N.J.
    • 대한수학회지
    • /
    • 제33권3호
    • /
    • pp.575-585
    • /
    • 1996
  • Recently, existence theorems of coupled fixed points for mixed monotone operators have been considered by several authors (see [1]-[3], [6]). In this paper, we are continuously going to study the existence problems of coupled fixed points for two more general classes of mixed monotone operators. As an application, we utilize our main results to show thee existence of coupled fixed points for a class of non-linear integral equations.

  • PDF

MULTIVALUED MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES

  • Lee Byung-Soo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권3호
    • /
    • pp.197-206
    • /
    • 2006
  • This paper introduces a class of multivalued mixed quasi-variational-like ineqcalities and shows the existence of solutions to the class of quasi-variational-like inequalities in reflexive Banach spaces.

  • PDF

A PROXIMAL POINT ALGORITHM FOR SOLVING THE GENERAL VARIATIONAL INCLUSIONS WITH M(·, ·)-MONOTONE OPERATORS IN BANACH SPACES

  • Chen, Junmin;Wang, Xian;He, Zhen
    • East Asian mathematical journal
    • /
    • 제29권3호
    • /
    • pp.315-326
    • /
    • 2013
  • In this paper, a new monotonicity, $M({\cdot},{\cdot})$-monotonicity, is introduced in Banach spaces, and the resolvent operator of an $M({\cdot},{\cdot})$-monotone operator is proved to be single valued and Lipschitz continuous. By using the resolvent operator technique associated with $M({\cdot},{\cdot})$-monotone operators, we construct a proximal point algorithm for solving a class of variational inclusions. And we prove the convergence of the sequences generated by the proximal point algorithms in Banach spaces. The results in this paper extend and improve some known results in the literature.

HUGE COUPLED COINCIDENCE POINT THEOREM FOR GENERALIZED COMPATIBLE PAIR OF MAPPINGS WITH APPLICATIONS

  • DESHPANDE, BHAVANA;HANDA, AMRISH
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제23권1호
    • /
    • pp.73-96
    • /
    • 2016
  • We establish a coupled coincidence point theorem for generalized com-patible pair of mappings under generalized nonlinear contraction on a partially or-dered metric space. We also deduce certain coupled fixed point results without mixed monotone property of F : X × X → X . An example supporting to our result has also been cited. As an application the solution of integral equations are obtained here to illustrate the usability of the obtained results. We improve, extend and generalize several known results.

COUPLED COINCIDENCE POINT RESULTS FOR GENERALIZED SYMMETRIC MEIR-KEELER CONTRACTION ON PARTIALLY ORDERED METRIC SPACES WITH APPLICATION

  • Deshpande, Bhavana;Handa, Amrish
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제24권2호
    • /
    • pp.79-98
    • /
    • 2017
  • We establish a coupled coincidence point theorem for generalized compatible pair of mappings $F,G:X{\times}X{\rightarrow}X$ under generalized symmetric Meir-Keeler contraction on a partially ordered metric space. We also deduce certain coupled fixed point results without mixed monotone property of $F:X{\times}X{\rightarrow}X$. An example supporting to our result has also been cited. As an application the solution of integral equations are obtain here to illustrate the usability of the obtained results. We improve, extend and generalize several known results.

A GENERAL ITERATIVE ALGORITHM FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN A HILBERT SPACE

  • Thianwan, Sornsak
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.13-30
    • /
    • 2010
  • Let C be a nonempty closed convex subset of a real Hilbert space H. Consider the following iterative algorithm given by $x_0\;{\in}\;C$ arbitrarily chosen, $x_{n+1}\;=\;{\alpha}_n{\gamma}f(W_nx_n)+{\beta}_nx_n+((1-{\beta}_n)I-{\alpha}_nA)W_nP_C(I-s_nB)x_n$, ${\forall}_n\;{\geq}\;0$, where $\gamma$ > 0, B : C $\rightarrow$ H is a $\beta$-inverse-strongly monotone mapping, f is a contraction of H into itself with a coefficient $\alpha$ (0 < $\alpha$ < 1), $P_C$ is a projection of H onto C, A is a strongly positive linear bounded operator on H and $W_n$ is the W-mapping generated by a finite family of nonexpansive mappings $T_1$, $T_2$, ${\ldots}$, $T_N$ and {$\lambda_{n,1}$}, {$\lambda_{n,2}$}, ${\ldots}$, {$\lambda_{n,N}$}. Nonexpansivity of each $T_i$ ensures the nonexpansivity of $W_n$. We prove that the sequence {$x_n$} generated by the above iterative algorithm converges strongly to a common fixed point $q\;{\in}\;F$ := $\bigcap^N_{i=1}F(T_i)\;\bigcap\;VI(C,\;B)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)q,\;p\;-\;q{\rangle}\;{\leq}\;0$ for all $p\;{\in}\;F$. Using this result, we consider the problem of finding a common fixed point of a finite family of nonexpansive mappings and a strictly pseudocontractive mapping and the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of zeros of an inverse-strongly monotone mapping. The results obtained in this paper extend and improve the several recent results in this area.

OUTER APPROXIMATION METHOD FOR ZEROS OF SUM OF MONOTONE OPERATORS AND FIXED POINT PROBLEMS IN BANACH SPACES

  • Abass, Hammad Anuoluwapo;Mebawondu, Akindele Adebayo;Narain, Ojen Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권3호
    • /
    • pp.451-474
    • /
    • 2021
  • In this paper, we investigate a hybrid algorithm for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators which is also a common fixed point problem for finite family of relatively quasi-nonexpansive mappings and split feasibility problem in uniformly convex real Banach spaces which are also uniformly smooth. The iterative algorithm employed in this paper is design in such a way that it does not require prior knowledge of operator norm. We prove a strong convergence result for approximating the solutions of the aforementioned problems and give applications of our main result to minimization problem and convexly constrained linear inverse problem.