• Title/Summary/Keyword: monoidal category

Search Result 6, Processing Time 0.021 seconds

MONOIDAL FUNCTORS AND EXACT SEQUENCES OF GROUPS FOR HOPF QUASIGROUPS

  • Alvarez, Jose N. Alonso;Vilaboa, Jose M. Fernandez;Rodriguez, Ramon Gonzalez
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.351-381
    • /
    • 2021
  • In this paper we introduce the notion of strong Galois H-progenerator object for a finite cocommutative Hopf quasigroup H in a symmetric monoidal category C. We prove that the set of isomorphism classes of strong Galois H-progenerator objects is a subgroup of the group of strong Galois H-objects introduced in [3]. Moreover, we show that strong Galois H-progenerator objects are preserved by strong symmetric monoidal functors and, as a consequence, we obtain an exact sequence involving the associated Galois groups. Finally, to the previous functors, if H is finite, we find exact sequences of Picard groups related with invertible left H-(quasi)modules and an isomorphism Pic(HMod) ≅ Pic(C)⊕G(H∗) where Pic(HMod) is the Picard group of the category of left H-modules, Pic(C) the Picard group of C, and G(H∗) the group of group-like morphisms of the dual of H.

DUALS OF ANN-CATEGORIES

  • Hanh, Dang Dinh;Quang, Nguyen Tien
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.23-36
    • /
    • 2012
  • Dual monoidal category $\mathcal{C}^*$ of a monoidal functor F : $\mathcal{C}\;{\rightarrow}\;\mathcal{V}$ has been constructed by S. Majid. In this paper, we extend the construction of dual structures for an Ann-functor F : $\mathcal{B}\;{\rightarrow}\;\mathcal{A}$. In particular, when F = $id_{\mathcal{A}}$, then the dual category $\mathcal{A}^*$ is indeed the center of $\mathcal{A}$ an this is a braided Ann-category.

RIBBON CATEGORY AND MAPPING CLASS GROUPS

  • Song, Yong-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.491-502
    • /
    • 2000
  • The disjoint union of mapping class groups g,1 gives us a braided monoidal category so that it gives rise to a double loop space structure. We show that there exists a natural twist in this category, so it gives us a ribbon category. We show that there exists a natural twist in this category, so it gives us a ribbon category. We explicitly express this structure by showing how the twist acts on the fundamental group of the surface Sg,l. We also make an explicit description of this structure in terms of the standard Dehn twists, as well as in terms of Wajnryb's Dehn twists. We show that the inverse of the twist g for the genus g equals the Dehn twist along the fixed boundary of the surface Sg,l.

  • PDF

THE BRAIDINGS IN THE MAPPING CLASS GROUPS OF SURFACES

  • Song, Yongjin
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.865-877
    • /
    • 2013
  • The disjoint union of mapping class groups of surfaces forms a braided monoidal category $\mathcal{M}$, as the disjoint union of the braid groups $\mathcal{B}$ does. We give a concrete and geometric meaning of the braidings ${\beta}_{r,s}$ in $\mathcal{M}$. Moreover, we find a set of elements in the mapping class groups which correspond to the standard generators of the braid groups. Using this, we can define an obvious map ${\phi}\;:\;B_g{\rightarrow}{\Gamma}_{g,1}$. We show that this map ${\phi}$ is injective and nongeometric in the sense of Wajnryb. Since this map extends to a braided monoidal functor ${\Phi}\;:\;\mathcal{B}{\rightarrow}\mathcal{M}$, the integral homology homomorphism induced by ${\phi}$ is trivial in the stable range.

HOMOTOPY TYPE OF A 2-CATEGORY

  • Song, Yongjin
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.175-183
    • /
    • 2010
  • The classical group completion theorem states that under a certain condition the homology of ${\Omega}BM$ is computed by inverting ${\pi}_0M$ in the homology of M. McDuff and Segal extended this theorem in terms of homology fibration. Recently, more general group completion theorem for simplicial spaces was developed. In this paper, we construct a symmetric monoidal 2-category ${\mathcal{A}}$. The 1-morphisms of ${\mathcal{A}}$ are generated by three atomic 2-dimensional CW-complexes and the set of 2-morphisms is given by the group of path components of the space of homotopy equivalences of 1-morphisms. The main part of the paper is to compute the homotopy type of the group completion of the classifying space of ${\mathcal{A}}$, which is shown to be homotopy equivalent to ${\mathbb{Z}}{\times}BAut^+_{\infty}$.

THE GROUP OF STRONG GALOIS OBJECTS ASSOCIATED TO A COCOMMUTATIVE HOPF QUASIGROUP

  • Alvarez, Jose N. Alonso;Rodriguez, Ramon Gonzalez;Vilaboa, Jose M. Fernandez
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.517-543
    • /
    • 2017
  • Let H be a cocommutative faithfully flat Hopf quasigroup in a strict symmetric monoidal category with equalizers. In this paper we introduce the notion of (strong) Galois H-object and we prove that the set of isomorphism classes of (strong) Galois H-objects is a (group) monoid which coincides, in the Hopf algebra setting, with the Galois group of H-Galois objects introduced by Chase and Sweedler.