• Title/Summary/Keyword: monitoring robot

Search Result 296, Processing Time 0.029 seconds

Health Monitoring and Efficient Data Management Method for the Robot Software Components (로봇 소프트웨어 컴포넌트의 실행 모니터링/효율적인 데이터 관리방안)

  • Kim, Jong-Young;Yoon, Hee-Byung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1074-1081
    • /
    • 2011
  • As robotics systems are becoming more complex there is the need to promote component based robot development, where systems can be constructed as the composition and integration of reusable building block. One of the most important challenges facing component based robot development is safeguarding against software component failures and malfunctions. The health monitoring of the robot software is most fundamental factors not only to manage system at runtime but also to analysis information of software component in design phase of the robot application. And also as a lot of monitoring events are occurred during the execution of the robot software components, a simple data treatment and efficient memory management method is required. In this paper, we propose an efficient events monitoring and data management method by modeling robot software component and monitoring factors based on robot software framework. The monitoring factors, such as component execution runtime exception, Input/Output data, execution time, checkpoint-rollback are deduced and the detail monitoring events are defined. Furthermore, we define event record and monitor record pool suitable for robot software components and propose a efficient data management method. To verify the effectiveness and usefulness of the proposed approach, a monitoring module and user interface has been implemented using OPRoS robot software framework. The proposed monitoring module can be used as monitoring tool to analysis the software components in robot design phase and plugged into self-healing system to monitor the system health status at runtime in robot systems.

Development of Monitoring Robot with Quadruped Link Mechanism (4족 링크 구조의 감시용 로봇 시스템 개발)

  • 정기범;박병훈;전병준;김동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.46-46
    • /
    • 2000
  • A quadruped monitoring robot is introduced. The robot has several features that poses arbitrary position thanks to a 4-wheel hive mechanism, transmits an image and command data via RF wireless communication, and moreover, the imaged date are transferred through a network communication. The robot plays a role in monitoring what is happening around the robot and covers wide range due to a moving camera operated by the 4-wheel mechanism. The robot system can be applied k versatile models based the distinguished techniques introduced in this paper

  • PDF

Design and Development of a Monitoring System based on Smart Device for Service Robot Applications

  • Lee, Jun;Seo, Yong-Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • Smart device has become an affordable main computing resource for robotic ap-plications in accordance with a fast growth of mobile internet environment. Since the computing power of smart device has been increased, smart device based ro-bot system attempts to replace traditional robot applications with laptop-based system. Methodologies for acquisition of remote sensory information and control of various types of robots using smart device have been proposed recently. In this paper, we propose a robot control system using a monitoring program and a communication protocol. The proposed system is a combination of an educa-tional programming oriented robot named EPOR-S. as small service robot plat-form and a smart device. Through a simulation study using image processing, the feasibility of combination of the proposed robot monitoring program and control system was verified.

Designing Factory Safety Monitoring Robot Using Microsoft Robotic Studio

  • Loh, Byoung-Gook
    • International Journal of Safety
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • Application of the Microsoft robotics studio (MSRS) to the design of a factory safety monitoring robot is presented. Basic structures of the MSRS and the service are introduced. The service is the key building block of the MSRS. Control of the safety monitoring robot is performed using four basic services: 1) the robot service which communicates with the embedded micro-processor and other services, 2) the sensor service that notifies the subscribing services of the change of the sensor value, 3) the motor service which controls the power levels to the motors, 4) the drive service which maneuvers the robot. With built-in capabilities of the MSRS, control of factory safety monitoring robot can be more easily performed.

Remote Monitoring and Control of the Real Robot associated with a Virtual Robot

  • Jeon, Byung-Joon;Kim, Dong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.43-48
    • /
    • 2005
  • A robot system encompassing a remote control and monitoring through a virtual robot design is addressed and a tracking problem for a 2D (2 dimension) moving target by a robot vision is chosen as a case study. The virtual robot is developed, and it synchronizes with the real robot by compensating delay time. Two systems are displayed on a remote panel by communicating command and image data. The virtual robot utilizes an OpenGL library in Visual $C^{++}$ environment. Additionally, the remote monitoring and control between the real robot and the virtual robot are accomplished by employing an appropriate data compression in a network communication.

  • PDF

Development of an Indoor Networked Security Robot System (네트워크 기반 실내 감시 로봇 시스템 개발)

  • Park, Keun Young;Heo, Guen Sub;Lee, Sang Ryong;Lee, Choon Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.3
    • /
    • pp.136-142
    • /
    • 2008
  • Mobile robots can offer services like intelligent monitoring in an indoor environment using network connection with remote users. In this paper, we designed and developed a networked security robot system with various sensors, such as flame detector, gas detector, sound monitoring module, and temperature sensor, etc. The robot can be accessed through a web service and the user can check the status of the environment. Using ADAMS software, we defined the motor specification for a worst-case condition of climbing over a obstacle. We applied the robot system in monitoring office condition.

  • PDF

Development of Leakage Current Sensor for Mobile Robot Chassis (이동 로봇 섀시 누전 모니터링 센서 개발)

  • Kim, Cheong Worl;Kwon, Ik Hyun;Kim, Sung Deuk;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.104-107
    • /
    • 2018
  • In this paper, we developed a sensor for monitoring the leakage current through the chassis of the robot. The leakage current sensor needs to be developed because it is a necessary part to prevent electric shock accidents that may occur through the chassis of a robot or an electric vehicle. This leakage monitoring sensor was developed to be mounted directly on the chassis of the robot. This sensor protects the control system from noise by discharging static and high-frequency noise that may occur in the chassis of the robot and monitors the leakage current by measuring the amount of current discharged through the ground. In this paper, a leakage monitoring sensor was developed with a simple structure using resistors, capacitors and OP-AMP, and the performance was evaluated.

Indoor Environment Monitoring Using a PXA 270-based Mobile Embedded System (PXA 270 기반 이동형 임베디드 시스템을 이용한 실내 환경 모니터링)

  • Jeong, Goo-Jong;Kim, In-Hyuk;Son, Young-Ik
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.249-251
    • /
    • 2009
  • Mobile patrol robots are mainly used in aerospace and military engineering because they can work at dangerous environment replacing a man. This paper presents a study on the remote monitoring and control system of a mobile patrol robot platform using TCP/IP. The mobile robot consists of intel PXA270 and linux-based system. It can get environment information such as images, temperature, humidity and slope by using two cameras and various sensors. And it transmits information data to a monitoring system through the ad-hoc network which is one of wireless network solutions. At this time, a mobile robot is a server and a monitoring system is a client. Users can monitor environment information which is received from a mobile robot by an application based on PC. We have used TCP/IP protocol, socket programming, interface technique of process and devices and control algorithm to embody the mobile robot and its monitoring system. Experimental results shows that the system can be utilized as a remote patrol monitoring tool.

  • PDF

Remote Monitoring System for a Building Cleaning Mobile Robot (빌딩청소용 이동로봇을 위한 원격 모니터링 시스템)

  • Yi, Soo-Yeong;Cho, Won-Ho;Choi, Byoung-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.74-80
    • /
    • 2009
  • This paper presents a remote monitoring and simulation system for a building cleaning mobile robot. It provides a tool of convenient 3D graphical map construction including network camera image viewer and status information of the robot. The 3D map is reconstructed from existing 2D building CAD data with DXF format using OpenGL graphic API. Through this system, it is possible to monitor and control the cleaning mobile robot from remote place. A practical experiment is performed to show the reliability and convenience of the monitoring system. The proposed system is expected to give efficient way of control and monitoring to building cleaning mobile robot.

  • PDF

Monitoring Robot System with RF and Network Communication (네트워크 및 RF 기반의 감시용 로봇 시스템)

  • Kim, Dong-Hwan;Jeong, Gi-Beom;Hong, Yeong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.733-740
    • /
    • 2001
  • A monitoring robot capable of doing network and RF communication is introduced. The robot has several features that poses arbitrary position thanks to a mechanism combining the 4wheel drive and 4 link mechanism, transmits an image and command data via RF wireless communication. Moreover, the image data from the camera are transferred through a network communication. The robot plays a role in monitoring what is happening around the robot, and covers wide range due to a moving camera associated with the 4 arms. The robot can adjust its mass center by the 4 link mechanism, hence it guarantees a stability in moving on the slope.

  • PDF