Vol. 7, No. 1, pp. 1-4, June 2008

InTERNATIONAL
JOURNAL OF SAFETY

www.kosos.or.kr

Designing Factory Safety Monitoring Robot Using
Microsoft Robotic Studio

Byoung Gook Loh*

Department of Mechanical Systems Engineering Hansung University, Seoul 136-792, Korea
(Received January 12, 2008; Accepted June 15, 2008)

Abstract : Application of the Microsoft robotics studio (MSRS) to the design of a factory safety monitoring robot
is presented. Basic structures of the MSRS and the service are introduced. The service is the key building block
of the MSRS. Control of the safety monitoring robot is performed using four basic services: 1) the robot service
which communicates with the embedded micro-processor and other services, 2) the sensor service that notifies the
subscribing services of the change of the sensor value, 3) the motor service which controls the power levels to the
motors, 4) the drive service which maneuvers the robot. With built-in capabilities of the MSRS, control of factory

safety monitoring robot can be more easily performed.

Key words: microsoft robotics studio, factory safety monitoring robot, service, serial communication

1. Introduction

In a general manufacturing factory environment, there
exist safety hazards such as slippery surface, leakage of
toxic gases, and scattering dust, all of which require
continuous monitoring to minimize health-risks to
human operators. One easy way to monitor the factory
environment is to dispatch multiple mobile robots
equipped with sensors to gather information on the fac-
tory environment. Gathered measurements are sent to
the central control unit and at the same time nearby
operating workers are alerted when the levels of mea-
surements exceed certain preset values.

As the prices of sensors and actuators decrease the
availability and selection of mobile robots have greatly
increased at a fast rate[1]. Control of the mobile robot has
been done by writing robot-specific application peripheral
interfaces (APIs) which is time-consuming and costly,
because one API developed for a mobile robot can not be
interchangeably used to other robots{2]. Accordingly, a
universal robot control program needs to be devised in a
way that most of personal computers currently run on
Windows. Microsoft Robotics Studio (MSRS) addresses
this issue[3-4]. The MSRS is a generic robot operating
system based on the popular NET framework, which sup-

*Corresponding author: bgloh @hansung.ac.kr

plies robot researchers with a standard and convenient
method to control the mobile robot. In this study, applica-
tion of MSRS to design of a mobile robot enhancing
safety of the factory environment is investigated.

2. Structure of MSRS

The MSRS runtime consists of three low-level runt-
imes: Concurrency and Coordination Runtime (CCR),
Decentralized Software Services (DSS), and the NET
Common Language Runtime (CLR) as shown in Fig. 1.

The CCR is a key component that connects the
MSRS runtime to a service and one important feature

Runtime Services

DSS Services

CCR

CLR

Fig. 1. Structure of MSRS

2 Byoung Gook Loh

of the CCR is the ability to perform asynchronous oper-
ations in any applications using .NET library. Also, the
CCR manages threading, thereby freeing developers
from creating their own threading codes. Driving of the
mobile robot requires asynchronous operations of actua-
tors and sensors. Lack of asynchronous operation in the
mobile robot significantly limits robot’s mobility. The
CCR coordinates the threads required to asynchronously
operate the sensors and the actuators. Without the CCR,
multiple callback routines need to be written and man-
aged using the interrupt service routine. With DSS,
which is based on the Representational State Transfer
(REST), developers can monitor services interactively in
real time. The REST defines the way resources are
allotted and the requests are transferred via the Web. To
control robots remotely, REST principles can be
employed .

3. Construction of MSRS Robot Application

Services are the basic building block in controlling a
mobile robot with the MSRS. Services contain the
codes to read sensors and to send commands to actua-
tors. Fig. 2 shows the construction of a service. The
contract identifier identifies the service and defines the
messages which can be sent to a service. Operations
from other services arrive at the main port and the ser-

Service URI

Contract identifier

I i
Main Port [Service Handlers _l‘|
A

h 4

State

¢

Subscription handlers

Partners

" Operations 1

I Other services I

Fig. 2. Construction of service

vice handler corresponding to the operation is invoked
and the state of the service can be retrieved or modi-
fied. A service can be parted with other services so that
the change of the state in a service can be notified to
other partnered services.

A robot application based on the MSRS is typically
comprised of multiple services to perform a pre-defined
task. Fig. 3 shows a robot application service which has
four basic building blocks: the sensor service, the motor
service, the drive service, and the robot service. The
sensor service receives the sensor change notification
from the robot service and updates its sensor values and
in turn, notifies other subscribed services of the change
in sensor measurements. The motor service handles the
actuation of the motors of the robot by supplying a cer-
tain power level to the motor. The drive service also
actuates the motor but in a more controlled way such as
“go forward”, “turn right”, “turn left”, and “go back-
ward”. The robot service communicates with the robot
hardware, generally a microprocessor through a serial
communication. The microprocessor embedded in the
robot controls the motor to drive robot and read the
sensor measurements to gather information on robot’s
states such as position, velocity, existence of nearby
obstacles, and so on. The robot is interfaced to the
MSRS via the serial communication between the robot
service and the robot hardware.

To explain how the robot service works, we will take
X-Bot manufactured by Yujinrobot for an example. The

iLd Sensor service
> Motor service
> Drive service
L Robot service

h

A

Robot Hardware

Fig. 3. Robot service with four services

Designing Factory Safety Monitoring Robot Using Microsoft Robotic Studio 3

Fig. 4. Xbot (Yujin Robot)

end
preamble | data5 | data4 | data3 | data2 | datal | dataC

mark

OxBB 8bits 8bits 8bits Bbits 8bits 8bits OxEE

Fig. 5. Serial communication protocol (read operation)

serial communication between the X-Bot and the MSRS
is carried out with eight bytes data as shown in Fig.5
with a 10 msec interval.

The XBot is equipped with ground sensors, bumper
sensors, infrared (IR) sensors, and encoders. Data
arrangement for the serial communication is as follow:

Ground Sensors = data5

Bumper Sensors = data4

IR Sensor = data3

Left Encoder = data2

Right Encoder = datal

Extra Sensor Data Interface = data0

The bumper sensors (touch sensors) are located on
the front and sides of the XBot, notifying contact of the
robot to the near-by obstacles, while IR sensors are the
proximity sensors which warn the robot when the robot
comes in close proximity of the obstacles. The left and
right encoders measure the rotation of the wheel. With
measurements, the driving distance and speed of the
robot can be estimated.

The Xbot comes with basic sensors tailed to drive the
robot along a designated path in a way that minimizes
or avoids contact with the neighboring objects but in
order to monitor the factory environment, extra sensors
such as a dust sensor, an accelerometer, a smoke sensor,
etc. need to be incorporated to the robot. Thus, an addi-
tional micro-processor is required to be added to the
system or the computer on which the MSRS runs
should be used to interface the additional sensors.

The control of the motors can be performed via the

preamble datal | data0 end mark

OxBB 8bits 8bits OXEE

Fig. 6. Serial communication protocol (write operation)

serial communication as follows:
byte[] Output = new byte[4];
Output {0] = (byte)OxBB;

Output [1] = (byte)(PowerToLeftWheel);
Output [2] = (byte)(PowerToRightWheel);
Output {3] = (byte)OxEE;

serialPort. Write(Output, 0, Output.Length)

Fig. 7 shows inter-relations of the Xbot services which
communicate each other by exchanging messages. When

[seviceHangiers|

or service
manPor ainars,
Robel [T
<SerdRat o ‘SetotorPover l ” s
SendRabotCommens MotorFo Sy ¢

Robot service

“Serscr Update>
consssenson
st Sonwon
slpper mezsuremert) Update | gesssmmmmmn
posibon seasca Handiar ‘Sencstcatid
{sconromets

<sersec umﬁl
)

Safety monitoring robot

Drive service
artnere
- Robot
Harder Stblgr

Fig. 7. Inter-relations of Xbot services

Handlers

SetMotorPowerHandler() :

Function ->Set motor power
SendRobotCommandHandler():

Function -> Send robot command to other services
SendBumperNotication ();

Function -> Notify when the bumper is pressed
SetDrivePowerHandler (),

Function -> Set drive power of motor
Messages:

<SendRobotCommand>
<SerialPortDataReceived>

<Bumper.update>

Fig. 8. Handlers and messages of Xbot

4 Byoung Gook Loh

a message arrives at the port which is monitored in real
time, the service receiving a message executes the rele-
vant message handler as shown in Fig. 7.

One of the main advantages of building a mobile
robot using the MSRS is easy interface with peripheral
devices such as a webcam, wireless communications,
etc. and a plethora of sub-routines arising from open
architecture of the MSRS. Developers worldwide using
the MSRS can submit and share their own codings,
while other robot programs are intended to be used for
certain robots and can not be re-used to other robots.

To interface a new hardware, which is not currently
supported, to the MSRS, we need write an onboard
interface that controls the robotic hardware. Also, ser-
vices that communicate with the onboard interface and
perform pre-defined tasks need to be written.

The onboard interfaces basically control the sensors
and actuators attached to the microprocessor and com-
municate with the MSRS via the serial communication.
And robot-specific motor service, robot service, drive
service, and sensor service need to be authored in a
similar manner shown in Fig. 7.

The MSRS also contains the simulation module. In
the simulation, multiple robots and its environment
including obstacles and terrain, on which the robots
ride, can be easily created and simulated using the
physics engine which handles collision, gravity, and
complicated calculations so that the way the robots
interacts with its environments can closely replicates the
way they would do in real world. Therefore before
building a robot which is costly and time-consuming,
the working and performance of the robot to be built
can be tested as realistically as possible,

In summary, the MSRS compatible mobile robots can
be a good platform to build a factory safety monitoring
mobile robot.

4, Conclusions

The control of a mobile robot can be more easily
accomplished by the MSRS than robot-specific control-
lers because 1) the MSRS runs on Window, which gives
advantages of easy accommodation of windows-based
peripherals such as webcam, voice recognition, etc. and
2) basic functions of the mobile robot such as sensing
and driving can be more efficiently handled without
using callback routines, 3) portability of a program devel-
oped using the MSRS can be greatly enhanced. Main
purpose of building a mobile robot for monitoring factory
safety is to check the safety of the factory. Therefore, if
the MSRS is used for controlling the robot, such periph-
eral tasks as navigation, obstacle avoidance, and commu-
nications can be easily accomplished and the developer
can concentrate on the main task, i.e. how to perform
effective gathering of information on the factory environ-
ment which might be harmful to the operators.

Acknowledgements

This research was financially supported by Hansung
University in the year of 2007.

References

[1] B. Gates, “A Robot in Every Home”, Scientific Ameri-
canMagazine, 2008, hitp:/fwww.sciam.cpom/article.cfimid=a-
robot-in-every-home

[2] K.Johns and T. Talyor, ‘“Professional Microsoft Robot-
ics Developer Studio”, Wiley Publishing inc.,2008.

[31 S. Morgan, “Programming Microsoft Robotics Studio”,
Microsoft Press,2008.

[41 J. Jackson, “Microsoft robotics studio: A technical intro-
duction”, IEEE Robotics & Automation Magazine,
no.4, vol.14, pp.82~87, 2007.

