• Title/Summary/Keyword: momentum transfer

Search Result 285, Processing Time 0.025 seconds

Counter-Current Flow Limitation Model Based on the Hyperbolic Two-fluid Equations and Interface Shape Function (쌍곡선형 이상유동 방정식과 경계면 모양함수를 이용한 유체기계의 역류유동제한점 예측방법 개발)

  • 정지환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.15-22
    • /
    • 2000
  • There are lots of industrial machines of which functions are achieved by operation of multi-phase fluids. Some of them take advantage of the characteristics of counter-current two-phase flow The maximum flow rates of gas and liquid phases which flow in opposite-directions (counter-current flow) are limited by a phenomenon known as a Counter-Current Flow Limitation (CCFL or Flooding) The mass and momentum conservation equations for each Phase were established to build a first-order hyperbolic partial derivative equations system. A new CCFL model is developed based on the characteristic equation of the hyperbolic PDE system. The present model has its applicationto the case in which a non-uniform flow is developed around a square or sharp-edged entrance of liquid phase. The model is able to he used to Predict the operating-limit of components in which mass and heat transfer are taking place between liquid and gas phases.

  • PDF

A three-region movable-boundary helical coil once-through steam generator model for dynamic simulation and controller design

  • Shifa Wu;Zehua Li;Pengfei Wang;G.H. Su;Jiashuang Wan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.460-474
    • /
    • 2023
  • A simple but accurate mathematical model is crucial for dynamic simulations and controller design of helical coil once-through steam generator (OTSG). This paper presents a three-region movable boundary dynamic model of the helical coil OTSG. Based on the secondary side fluid conditions, the OTSG is divided into subcooled region (two control volumes), two-phase region (two control volumes) and superheated region (three control volumes) with movable boiling boundaries between each region. The nonlinear dynamic model is derived based on mass, energy and momentum conservation equations. And the linear model is obtained by using the transfer function and state space transformation, which is a 37-order model of five input and three output. Validations are made under full-power steady-state condition and four transient conditions. Results show good agreements among the nonlinear model, linear model and the RELAP5 model, with acceptable errors. This model can be applied to dynamic simulations and controller design of helical coil OTSG with constant primary-side flow rate.

CCD Photometric Observations and Light Curve Synthesis of the Near-Contact Binary XZ Canis Minoris (근접촉쌍성 XZ CMi의 CCD 측광관측과 광도곡선 분석)

  • Kim, Chun-Hwey;Park, Jang-Ho;Lee, Jae-Woo;Jeong, Jang-Hae;Oh, Jun-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.141-156
    • /
    • 2009
  • Through the photometric observations of the near-contact binary, XZ CMi, new BV light curves were secured and seven times of minimum light were determined. An intensive period study with all published timings, including ours, confirms that the period of XZ CMi has varied in a cyclic period variation superposed on a secular period decrease over last 70 years. Assuming the cyclic change of period to occur by a light-time effect due to a third-body, the light-time orbit with a semi-amplitude of 0.0056d, a period of 29y and an eccentricity of 0.71 was calculated. The observed secular period decrease of $-5.26{\times}10^{-11}d/P$ was interpreted as a result of simultaneous occurrence of both a period decrease of $-8.20{\times}10^{-11}d/P$ by angular momentum loss (AML) due to a magnetic braking stellar wind and a period increase of $2.94{\times}10^{-11}d/P$ by a mass transfer from the less massive secondary to the primary components in the system. In this line the decreasing rate of period due to AML is about 3 times larger than the increasing one by a mass transfer in their absolute values. The latter implies a mass transfer of $\dot{M}_s=3.21{\times}10^{-8}M_{\odot}y^{-1}$ from the less massive secondary to the primary. The BV light curves with the latest Wilson-Devinney binary code were analyzed for two separate models of 8200K and 7000K as the photospheric temperature of the primary component. Both models confirm that XZ CMi is truly a near-contact binary with a less massive secondary completely filling Roche lobe and a primary inside the inner Roche lobe and there is a third-light corresponding to about 15-17% of the total system light. However, the third-light source can not be the same as the third-body suggested from the period study. At the present, however, we can not determine which one between two models is better fitted to the observations because of a negligible difference of $\sum(O-C)^2$ between them. The diversity of mass ratios, with which previous investigators were in disagreement, still remains to be one of unsolved problems in XZ CMi system. Spectroscopic observations for a radial velocity curve and high-resolution spectra as well as a high-precision photometry are needed to resolve some of remaining problems.

분포형모델을 이용한 지형특성변화에 따른 유출해석

  • 심창석;이순탁
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.249-254
    • /
    • 2003
  • 분석에 이용된 격자망은 동곡, 고로, 미성, 병천, 효령 및 무성지점에 각각 12개, 30개, 45개, 76개, 46개 및 1265개의 조격자를 구성하였으며 하천의 수로방향 및 경사형태를 세분화하기 위하여 각 지점에 대하여 8개, 24개, 24개, 44개, 12개 및 64개의 세격자로 분할하였다. AGNPS를 이용한 첨두유량의 모의발생 결과치가 동곡, 고로, 미성, 병천, 효령 및 무성지점에서 측정값과 비교하여 각 호우사상별로 상대오차가 1.0~25.0%, 4.0~27.0%, 7.0~29.2%, 2.0~23.9%, 3.0~25.0% 및 3.6~21.0%의 차이를 나타내었다. 분석결과에서 AMCII조건에서는 관측치와 분석결과치가 유사하게 나타났으나 AMCI조건에 대해서는 상대적으로 작은 값을 보였으며 AMCIII조건에서는 다소 큰 값으로 분석되었다. SCS방법에서 제안하는 AMC조건별 CN값을 우리 실정에 적합하도록 수정 보완하기 위한 수정 유출곡선지수 $CN_{m}$ /I과 $CN_{m}$/III을 재구성하였으며, 여기에 적용되는 수정 유출 곡선지수식의 계수 a를 추정한 결과, 기왕에 발표된 연구결과와 거의 일치된 경향을 나타내었다. 제안된 수정 CN식을 이용하여 산정한 결과치와 관측치는 거의 유사하게 나타났다. AGNPS모델에 의한 유출량 산정에 있어 수문학적 토양피복형수(CN)의 결정을 위하여 선행강우량과 토양의 공극율 및 지형인자인 각 셀마다의 유역경사를 이용하여 관계식(CN =f($X_1$, $X_2$, $X_3$))을 유도하였으며, 분석 결과에서 CN이 선행강우량과 가장 밀접한 관계가 있음을 알 수 있었으며 유역경사, 토양의 공극율 순으로 나타났다..88mg/$\ell$~의 범위로 나타났다. 무태교 지점에서의 총인의 농도는 0.52mg/$\ell$~0.99mg/$\ell$~의 범위이었다. 신천에 금호강물을 혼합한 이후에도 부유물질, 생화학적산소요구량, 암모니아태 질소, 총인 등의 농도가 개선되지 않았다. 즉 금호강물의 혼합은 신천수질환경사업소에서 배출되는 방류수에 함유되어 있을 2차 오염물질의 희석이라는 이점외의 수질개선효과는 확인되지 않았다.l years and a new type of transfer crane has been developed. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results co

  • PDF

키토산 분자량 변화에 따른 수중의 여러 중금속들의 제거에 관한 연구

  • 이승원;김동석
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.292-296
    • /
    • 2003
  • Autoclaving처리를 하지 않은 키토산과 autoclaving처리한 키토산과의 중금속 흡착실험을 해 본 결과 다음과 같은 결과를 도출 할 수 있었다. 1) 먼저 중금속간의 흡착능을 고찰하기 위하여 Langmuir와 Freundlich 흉착등온식에 적용시켜 본 결과 Freundlich 흡착등온식 보다는 Langmuir 흡착등온식이 보다 적합한 것으로 나타났다. 2) 시간에 따라서 autoclaving 처리한 키토산의 중금속 제거 가능성과 그 효율을 검토하기 위하여 각 중금속간의 Langmuir 흡착등온식을 이용하여 $q_{max}$를 나타냈다. 15 min > 60 min > 0 min 순으로 모든 중금속 제거 실험에서 15 min 동안 autoclaving 처리한 키토산의 중금속 흡착량이 가장 높은 것으로 나왔다. 그러므로 기존의 키토산 보다는 15 min동안 autoclaving 처리한 키토산이 중금속 제거에 더 좋은 흡착제로써 역할을 할 수 있을 것으로 판단된다. 3) 키토산을 이용한 중금속 제거에서는 $Pb^{2+}$ > $Cd^{2+}$ > $Cu^{2+}$ > $Cr^{3+}$순서로 제거가 되었다. 여러 연구자들의 실험 결과를 종합해 볼 때 Pb$^{2+}$가 중금속 중에 제거가 잘 된다는 연구 결과가 많이 발표 되었으며, $Cd^{2+}$, $Cu^{2+}$, $Cr^{3+}$의 경우에는 흡착제의 종류에 따라서 제거되는 순서가 다르다는 연구 결과들이 보고 되고 있다. 그러나 어떠한 이유로 중금속의 제거에 차이가 있는지에 대해서는 명확한 결론이 내려져 있지 않는 실정이다. 이러한 중금속간의 경쟁적인 관계에 대해 더 많은 세밀한 연구가 이루어져야 할 것 같다.는 0.52mg/$\ell$~0.99mg/$\ell$~의 범위이었다. 신천에 금호강물을 혼합한 이후에도 부유물질, 생화학적산소요구량, 암모니아태 질소, 총인 등의 농도가 개선되지 않았다. 즉 금호강물의 혼합은 신천수질환경사업소에서 배출되는 방류수에 함유되어 있을 2차 오염물질의 희석이라는 이점외의 수질개선효과는 확인되지 않았다.l years and a new type of transfer crane has been developed. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results could be confirmed by the experiments under various conditions.뢰, 결속 등 다차원의 개념에 대한 심도 깊은 연구와 최근 제기되고 있는 이론

  • PDF

WZ Cephei: A Dynamically Active W UMa-Type Binary Star

  • Jeong, Jang-Hae;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.163-172
    • /
    • 2011
  • An intensive analysis of 185 timings of WZ Cep, including our new three timings, was made to understand the dynamical picture of this active W UMa-type binary. It was found that the orbital period of the system has complexly varied in two cyclical components superposed on a secularly downward parabola over about 80y. The downward parabola, corresponding to a secular period decrease of $-9.{^d}97{\times}10^{-8}y^{-1}$, is most probably produced by the action of both angular momentum loss (AML) due to magnetic braking and mass-transfer from the massive primary component to the secondary. The period decrease rate of $-6.^{d}72{\times}10^{-8}y^{-1}$ due to AML contributes about 67% to the observed period decrease. The mass flow of about $5.16{\times}10^{-8}M_{\odot}y^{-1}$ from the primary to the secondary results the remaining 33% period decrease. Two cyclical components have an $11.^{y}8$ period with amplitude of $0.^{d}0054$ and a $41.^{y}3$ period with amplitude of $0.^{d}0178$. It is very interesting that there seems to be exactly in a commensurable 7:2 relation between their mean motions. As the possible causes, two rival interpretations (i.e., light-time effects (LTE) by additional bodies and the Applegate model) were considered. In the LTE interpretation, the minimum masses of $0.30M_{\odot}$ for the shorter period and $0.49M_{\odot}$ for the longer one were calculated. Their contributions to the total light were at most within 2%, if they were assumed to be main-sequence stars. If the LTE explanation is true for the WZ Cep system, the 7:2 relation found between their mean motions would be interpreted as a stable 7:2 orbit resonance produced by a long-term gravitational interaction between two tertiary bodies. In the Applegate model interpretation, the deduced model parameters indicate that the mechanism could work only in the primary star for both of the two period modulations, but could not in the secondary. However, we couldn't find any meaningful relation between the light variation and the period variability from the historical light curve data. At present, we prefer the interpretation of the mechanical perturbation from the third and fourth stars as the possible cause of two cycling period changes.

Three-dimensional Numerical Prediction on the Evolution of Nocturnal Thermal High (Tropical Night) in a Basin

  • Choi, Hyo;Kim, Jeong-Woo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.57-81
    • /
    • 1997
  • Numerical prediction of nocturnal thermal high in summer of the 1995 near Taegu city located in a basin has been carried out by a non-hydrostatic numerical model over complex terrain through one-way double nesting technique in the Z following coordinate system. Under the prevailing westerly winds, vertical turbulent fluxes of momentum and heat over mountains for daytime hours are quite strong with a large magnitude of more than $120W/\textrm{m}^2$, but a small one of $5W/\textrm{m}^2$ at the surface of the basin. Convective boundary layer (CBL) is developed with a thickness of about 600m over the ground in the lee side of Mt. Hyungje, and extends to the edge of inland at the interface of land sea in the east. Sensible heat flux near the surface of the top of the mountain is $50W/\textrm{m}^2$, but its flux in the basin is almost zero. Convergence of sensible heat flux occurs from the ground surface toward the atmosphere in the lower layer, causing the layer over the mountain to be warmed up, but no convergance of the flux over the basin results from the significant mixing of air within the CBL. As horizontal transport of sensible heat flux from the top of the mountain toward over the basin results in the continuous accumulation of heat with time, enhancing air temperature at the surface of the basin, especially Taegu city to be higher than $39.3^{\circ}C$. Since latent heat fluxes are $270W/\textrm{m}^2$ near the top of the mountain and $300W/\textrm{m}^2$ along the slope of the mountain and the basin, evaporation of water vapor from the surface of the basin is much higher than one from the mountain and then, horizontal transport of latent heat flux is from the basin toward the mountain, showing relative humidity of 65 to 75% over the mountain to be much greater than 50% to 55% in the basin. At night, sensible heat fluxes have negative values of $-120W/\textrm{m}^2$ along the slope near the top of the mountain and $-50W/\textrm{m}^2$ at the surface of the basin, which indicate gain of heat from the lower atmosphere. Nighttime radiative cooling produces a shallow nocturnal surface inversion layer with a thickness of about 100m, which is much lower than common surface inversion layer, and lifts extremely heated air masses for daytime hours, namely, a warm pool of $34^{\circ}C$ to be isolated over the ground surface in the basin. As heat transfer from the warm pool in the lower atmosphere toward the ground of the basin occurs, the air near the surface of the basin does not much cool down, resulting in the persistence of high temperature at night, called nocturnal thermal high or tropical night. High relative humidity of 75% is found at the surface of the basin under the moderate wind, while slightly low relative humidity of 60% is along the eastern slope of the high mountain, due to adiabatic heating by the srong downslope wind. Air temperature near the surface of the basin with high moisture in the evening does not get lower than that during the day and the high temperature produces nocturnal warming situation.

  • PDF

Development of a Crash Cushion Using the Frictional and Inertial Energy by Computer Simulation (컴퓨터 시뮬레이션에 의한 관성과 마찰 에너지를 이용하는 충격흡수시설의 개발)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Kim, Kwang-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.23-30
    • /
    • 2009
  • Crash cushions are protective devices that prevent errant vehicles from impacting on fixed objects. This function is accomplished by gradually decelerating a vehicle to a safe stop in a relatively short distance. Commonly used crash cushions generally employ one of two concepts to accomplish this function. The first concept involves the absorption of the kinetic energy of a moving vehicle by crushable or plastically deformable materials and the other one involves the transfer of the momentum of a moving vehicle to an expendable mass of material located in the vehicle's path. Crash cushions using the first concept are generally referred to as compression crash cushions and crash cushions using the other concept are generally referred to as inertial crash cushion. The objective of this research is the development of a compression-type crash cushion by employing the two concepts simultaneously. To minimize the number of full-scale crash tests for the development of the crash cushion, preliminary design guide considering inertial and frictional energy absorption was constructed and computer simulation was performed. LS-DYNA program, which is most widely used to analyze roadside safety features, was used for the computer simulation. The developed crash cushion satisfied the safety evaluation criteria for various impact conditions of CC2 performance level in the Korean design guide.

V700 Cygni: A Dynamically Active W UMa-type Binary Star II

  • Kim, Chun-Hwey;Jeong, Jang-Hae
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.151-161
    • /
    • 2012
  • An intensive analysis of 148 timings of V700 Cyg was performed, including our new timings and 59 timings calculated from the super wide angle search for planets (SWASP) observations, and the dynamical evidence of the W UMa W subtype binary was examined. It was found that the orbital period of the system has varied over approximately $66^y$ in two complicated cyclical components superposed on a weak upward parabolic path. The orbital period secularly increased at a rate of $+8.7({\pm}3.4){\times}10^{-9}$ day/year, which is one order of magnitude lower than those obtained by previous investigators. The small secular period increase is interpreted as a combination of both angular momentum loss (due to magnetic braking) and mass-transfer from the less massive component to the more massive component. One cyclical component had a $20.^y3$ period with an amplitude of $0.^d0037$, and the other had a $62.^y8$ period with an amplitude of $0.^d0258$. The components had an approximate 1:3 relation between their periods and a 1:7 ratio between their amplitudes. Two plausible mechanisms (i.e., the light-time effects [LTEs] caused by the presence of additional bodies and the Applegate model) were considered as possible explanations for the cyclical components. Based on the LTE interpretation, the minimum masses of 0.29 $M_{\odot}$ for the shorter period and 0.50 $M_{\odot}$ for the longer one were calculated. The total light contributions were within 5%, which was in agreement with the 3% third-light obtained from the light curve synthesis performed by Yang & Dai (2009). The Applegate model parameters show that the root mean square luminosity variations (relative to the luminosities of the eclipsing components) are 3 times smaller than the nominal value (${\Delta}L/L_{p,s}{\approx}0.1$), indicating that the variations are hardly detectable from the light curves. Presently, the LTE interpretation (due to the third and fourth stars) is preferred as the possible cause of the two cycling period changes. A possible evolutionary implication for the V700 Cyg system is discussed.

Three-Dimensional Numerical Simulations of Open-Channel Flows with Alternate Vegetated Zones (교행식생 영역을 갖는 개수로 흐름에서의 3차원 수치모의)

  • Kang, Hyeongsik;Kim, Kyu-Ho;Im, Dongkyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.247-257
    • /
    • 2009
  • In the present paper, turbulent open-channel flows with alternate vegetated zones are numerically simulated using threedimensional model. The Reynolds-averaged Navier-Stokes Equations are solved with the ${\kappa}-{\varepsilon}$ model. The CFD code developed by Olsen(2004) is used for the present study. For model validation, the partly vegetated channel flows are simulated, and the computed depth-averaged mean velocity and Reynolds stress are compared with measured data in the literature. Comparisons reveal that the present model successfully predicts the mean flow and turbulent structures in vegetated open-channel. However, it is found that the ${\kappa}-{\varepsilon}$ model cannot accurately predict the momentum transfer at the interface between the vegetated zone and the non-vegetated zone. It is because the ${\kappa}-{\varepsilon}$ model is the isotropic turbulence model. Next, the open channel flows with alternate vegetated zones are simulated. The computed mean velocities are compared well with the previously reported measured data. Good agreement between the simulated results and the experimental data was found. Also, the turbulent flows are computed for different densities of vegetation. It is found that the vegetation curves the flow and the meandering flow pattern becomes more obvious with increasing vegetation density. When the vegetation density is 9.97%, the recirculation flows occur at the locations opposite to the vegetation zones. The impacts of vegetation on the flow velocity and the water surface elevation are also investigated.