• Title/Summary/Keyword: moment-rotation relationship

Search Result 63, Processing Time 0.025 seconds

Analytical investigation on moment-rotation relationship of through-tenon joints with looseness in ancient timber buildings

  • Xue, Jianyang;Qi, Liangjie;Dong, Jinshuang;Xu, Dan
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.241-248
    • /
    • 2018
  • To study the mechanical properties of joints in ancient timber buildings in depth, the force mechanism of the through-tenon joints was analyzed, also the theoretical formulas of the moment-rotation angles of the joints with different loosening degrees were deduced. To validate the rationality of the theoretical calculation formulas, six joint models with 1/3.2 scale ratio, including one intact joint and five loosening joints, were fabricated and tested under cyclic loading. The specimens underwent the elastic stage, the plastic stage and the destructive stage, respectively. At the same time, the moment-rotation backbone curves of the tenon joints with different looseness were obtained, and the theoretical calculation results were validated when compared with the experimental results. The results show that the rotational moment and the initial rotational stiffness of the tenon joints increase gradually with the increase of the friction coefficient. The increase of the tenon section height can effectively improve the bearing capacity of the through-tenon joints. As the friction coefficient of the wood and the insertion length of the tension increase, the embedment length goes up, whereas it decreases with the increase of section height. With the increase of the looseness, the bearing capacity of the joint is reduced gradually.

Moment-rotation relationship of hollow-section beam-to-column steel joints with extended end-plates

  • Wang, Jia;Zhu, Haiming;Uy, Brian;Patel, Vipulkumar;Aslani, Farhad;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.717-734
    • /
    • 2018
  • This paper presents the flexural performance of steel beam-to-column joints composed of hollow structural section beams and columns. A finite element (FE) model was developed incorporating geometrical and material nonlinearities to evaluate the behaviour of joints subjected to bending moments. The numerical outcomes were validated with experimental results and compared with EN1993-1-8. The demountability of the structure was discussed based on the tested specimen. A parametric analysis was carried out to investigate the effects of steel yield strength, end-plate thickness, beam thickness, column wall thickness, bolt diameter, number of bolts and location. Consequently, an analytical model was derived based on the component method to predict the moment-rotation relationships for the sub-assemblies with extended end-plates. The accuracy of the proposed model was calibrated by the experimental and numerical results. It is found that the FE model is fairly reliable to predict the initial stiffness and moment capacity of the joints, while EN1993-1-8 overestimates the initial stiffness extensively. The beam-to-column joints are shown to be demountable and reusable with a moment up to 53% of the ultimate moment capacity. The end-plate thickness and column wall thickness have a significant influence on the joint behaviour, and the layout of double bolt-rows in tension is recommended for joints with extended end-plates. The derived analytical model is capable of predicting the moment-rotation relationship of the structure.

Seismic Design of Mid-to-Low Rise Steel Moment Frames Based on Available Connection Rotation Capacity (접합부 회전능력에 기초한 중/저층 철골모멘트골조의 내진설계)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.715-723
    • /
    • 2007
  • A displacement-based seismic design procedure was proposed for mid-to-low-rise steel moment frames. The proposed method was totally different from the current R-factor approach in that it directly uses available connection rotation capacity as a primary design variable. To this end, the relationship between available connection rotation capacity and seismic response modification (R factor) was established first; this relationship has been a missing link in current ductility-based design practice. A step-by-step displacement-based iterative design procedure was then proposed and verified using inelastic dynamic analysis.

Component method model for predicting the moment resistance, stiffness and rotation capacity of minor axis composite seat and web site plate joints

  • Kozlowski, Aleksander
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.469-486
    • /
    • 2016
  • Codes EN 1993 and EN 1994 require to take into account actual joint characteristics in the global analysis. In order to implement the semi-rigid connection effects in frame design, knowledge of joint rotation characteristics ($M-{\phi}$ relationship), or at least three basic joint properties, namely the moment resistance $M_R$, the rotational stiffness $S_j$ and rotation capacity, is required. To avoid expensive experimental tests many methods for predicting joint parameters were developed. The paper presents a comprehensive analytical model that has been developed for predicting the moment resistance $M_R$, initial stiffness $S_{j.ini}$ and rotation capacity of the minor axis, composite, semi-rigid joint. This model is based on so-called component method included in EN 1993 and EN 1994. Comparison with experimental test results shows that a quite good agreement was achieved. A computer program POWZ containing proposed procedure were created. Based on the numerical simulation made with the use of this program and applying regression analysis, simplified equations for main joint properties were also developed.

Comparison of support vector machines enabled WAVELET algorithm, ANN and GP in construction of steel pallet rack beam to column connections: Experimental and numerical investigation

  • Hossein Hasanvand;Tohid Pourrostam;Javad Majrouhi Sardroud;Mohammad Hasan Ramasht
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.19-28
    • /
    • 2023
  • This paper describes the experimental investigation of steel pallet rack beam-to-column connec-tions. Total behavior of moment-rotation (M-φ) curve and the effect of particular characteristics on the behavior of connection were studied and the associated load strain relationship and corre-sponding failure modes are presented. In this respect, an estimation of SPRBCCs moment and rotation are highly recommended in early stages of design and construction. In this study, a new approach based on Support Vector Machines (SVMs) coupled with discrete wavelet transform (DWT) is designed and adapted to estimate SPRBCCs moment and rotation according to four input parameters (column thickness, depth of connector and load, beam depth,). Results of SVM-WAVELET model was compared with genetic programming (GP) and artificial neural networks (ANNs) models. Following the results, SVM-WAVELET algorithm is helpful in order to enhance the accuracy compared to GP and ANN. It was conclusively observed that application of SVM-WAVELET is especially promising as an alternative approach to estimate the SPRBCCs moment and rotation.

Flexural behavior of partially-restrained semirigid steel connections

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.441-458
    • /
    • 2001
  • We analyzed the experimental and theoretical behavior of a particular type of steel joint designed to connect beam to beam and able to transfer both shear forces and bending moments. This joint is characterized by the use of steel plates and bolts enclosed in the width of the beams. The experimental investigation was carried out characterizing the constituent materials and testing in flexure beams constituted by two portions of beams connected in the middle with the joint proposed. Connections having different characteristics in terms of thickness of plates, number and type of bolts were utilized. Flexure tests allow one to determine the loaddeflection curves of the beam tested and the moment-rotation diagrams of the connections, highlighting the strength and the strain capacity of the joints. The proposed analytical model allows one to determine the moment-rotation relationship of the connections, pointing out the influence of the principal geometrical and mechanic characteristics of single constituents on the full properties of the joint.

An approach for moment-rotation relationship and bearing strength of segment lining's joint (세그먼트 라이닝 이음부의 모멘트-회전 관계와 지압강도 계산)

  • Lee, Young Joon;Chung, Jee Seung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.2
    • /
    • pp.93-106
    • /
    • 2021
  • In general, segment lining tunnel refers to a tunnel formed by connecting precast concrete segments as a ring and connecting such rings to each other in the longitudinal direction of the tunnel. As the structural properties of the segment lining is highly dependent on the behavior of the segment joints, thus correct modelling of joint behavior is crucial to understand and design the segment tunnel lining. When the tunnel is subjected to ground loads, the segment joint behaves like a hinge that resists rotation, and when the induced moment exceeds a certain limit of the rotation then it may enter into non-linear field. In understanding the effect of the segment joint on the lining behavior, a moment-rotation relationship of the segment joint was explored based on the Japanese practice and Janssen's approach commonly used in the actual design. This study also presents a method to determine the rotational stiffness of joint refer to the bearing strength. The rotation of the segment joint was estimated in virtual design conditions based on the existing models and the proposed method. And the sectional force of the segment lining and joint were calculated along with the estimated rotation. As the rotation at the segment joint increases, the joint contact area decreases, so the designer have to verify the segment joint for bearing strength as well. This paper suggests a consistent method to determine the rotational stiffness and bearing strength of joints.

Study of a self-centering beam-column joint with installed tapered steel plate links

  • Liusheng He;Yangchao Ru;Haifeng Bu;Ming Li
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.391-403
    • /
    • 2023
  • In this study, a new type of self-centering beam-column joint with tapered steel plate links is proposed. Firstly, mechanical property of the basic joint (with the prestressed steel strands only, to provide the self-centering ability) and the combined joint (with both the prestressed steel strands and tapered steel plate links, to provide self-centering and energy dissipation simultaneously) is theoretically analyzed. Then, three joints with different dimensions and combinations of tapered plate links are designed and tested through a series of quasi-static cyclic loading tests. Test results show that a nearly bilinear elastic moment-rotation relationship for the basic joint is obtained. With the addition of tapered steel plate links, typical flag-shape hysteretic curves are obtained, which indicates good self-centering and energy dissipating ability of the combined joint. By installing multiple tapered plate links, stiffness and bearing capacity of the beam-column joint can be enhanced. The theoretical moment-rotation relationships agree well with the test results. A simplified macro model of the proposed joint is developed using OpenSees, which simulates reasonably well its hysteretic behavior.

Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship. (모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석)

  • 곽효경;김선필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.190-197
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Redistribution of Negative Moments in Beams Subjected to Lateral Load (횡하중에 대한 휨재의 부모멘트 재분배)

  • Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.731-740
    • /
    • 2011
  • Provisions for the redistribution of negative moments in KCI 2007 and ACI 318-08 use a method for continuous flexural members subjected to uniformly-distributed gravity load. Moment redistributions and plastic rotations in beams of reinforced concrete moment frames subjected to lateral load differ from those in continuous flexural members due to gravity load. In the present study, a quantitative relationship between the moment redistribution and plastic rotation is established for beams subjected to both lateral and gravity loads. Based on the relationship, a design method for the redistribution of negative moments is proposed based on a plastic rotation capacity. The percentage change in negative moments in the beam was defined as a function of the tensile strain of re-bars at the section of maximum negative moment, which is determined by a section analysis at an ultimate state using KCI 2007 and ACI 318-08. Span, reinforcement ratio, cracked section stiffness, and strain-hardening behavior substantially affected the moment redistribution. Design guidelines and examples for the redistribution of the factored negative moments determined by elastic theory for beams under lateral load are presented.