DOI QR코드

DOI QR Code

An approach for moment-rotation relationship and bearing strength of segment lining's joint

세그먼트 라이닝 이음부의 모멘트-회전 관계와 지압강도 계산

  • 이영준 (동양대학교 대학원 건설공학과) ;
  • 정지승 (동양대학교 대학원 건설공학과)
  • Received : 2021.02.01
  • Accepted : 2021.03.02
  • Published : 2021.03.31

Abstract

In general, segment lining tunnel refers to a tunnel formed by connecting precast concrete segments as a ring and connecting such rings to each other in the longitudinal direction of the tunnel. As the structural properties of the segment lining is highly dependent on the behavior of the segment joints, thus correct modelling of joint behavior is crucial to understand and design the segment tunnel lining. When the tunnel is subjected to ground loads, the segment joint behaves like a hinge that resists rotation, and when the induced moment exceeds a certain limit of the rotation then it may enter into non-linear field. In understanding the effect of the segment joint on the lining behavior, a moment-rotation relationship of the segment joint was explored based on the Japanese practice and Janssen's approach commonly used in the actual design. This study also presents a method to determine the rotational stiffness of joint refer to the bearing strength. The rotation of the segment joint was estimated in virtual design conditions based on the existing models and the proposed method. And the sectional force of the segment lining and joint were calculated along with the estimated rotation. As the rotation at the segment joint increases, the joint contact area decreases, so the designer have to verify the segment joint for bearing strength as well. This paper suggests a consistent method to determine the rotational stiffness and bearing strength of joints.

일반적으로 세그먼트 라이닝 터널은 프리캐스트 콘크리트 세그먼트를 연결하여 하나의 링을 구성하고 터널의 진행방향으로 링을 서로 결합하여 형성한 터널을 말한다. 세그먼트 라이닝의 구조적 특성은 세그먼트 이음부의 거동에 따라 크게 달라지므로 이음부를 적절하게 모델링해야 한다. 지반 하중을 받을 때 세그먼트 이음부는 회전에 저항하는 힌지로 작동하며, 모멘트-회전 관계는 비선형 거동을 보인다. 세그먼트 이음부가 라이닝 거동에 미치는 영향을 파악하기 위해 실제 설계에 통용되는 일본 기준 및 Janssen 모델을 적용하여 세그먼트 이음부의 모멘트-회전 관계를 설정하였다. 또한 이 논문은 지압강도를 기초로 세그먼트 이음부의 회전강성을 결정하는 방법을 제시하였다. 가상의 설계조건에서 기존 모델 및 제시된 방법을 적용해 세그먼트 이음부의 회전을 추정하고 세그먼트 라이닝과 이음부에서 발생하는 단면력을 계산하였다. 세그먼트 이음부의 회전이 증가할수록 이음부의 접촉 면적이 감소하므로 세그먼트 이음부의 지압강도를 확인해야 한다. 이 논문은 세그먼트 이음부의 지압강도를 검토하기 위해 세그먼트 이음부의 회전강성을 결정하고 지압강도를 계산하는 일관된 방법을 제시하였다.

Keywords

References

  1. Blom, C.B.M. (2002a), Design philosophy of concrete linings for tunnels in soft soils, Ph.D. Thesis, Delft University of Technology, pp. 41-42.
  2. Blom, C.B.M. (2002b), Background document "Lining behaviour - analytical solutions of coupled segmented rings in soil", Delft University of Technology, pp. 16-22.
  3. Duddeck, H., Erdmann, J. (1982), "Structural design models for tunnels", In: Jones, M.J.(Ed.), Institution of Mining and Metallurgy, Tunnelling '82 Papers Presented at the Third International Symposium, London, pp. 83-92.
  4. El Naggar, H., Hinchberger, S.D. (2008), "An analytical solution for jointed tunnel linings in elastic soil or rock", Canadian Geotechnical Journal, Vol. 45, No. 11, pp. 1572-1593. https://doi.org/10.1139/T08-075
  5. Hordijk, D.A., Gijsbers, F.B.J. (1996), Laboratoriumproeven tunnelsegmenten (Laboratory tests tunnel segments), Report No. 96-CON-R0708/03, TNO-Bouw, Delft, pp. 1-78.
  6. Janssen, P. (1983), Tragverhalten von Tunnelausbauten mit Gelenktubbings, University of Braunschweig, Department of Civil Engineering, Institute for Structural Analysis, Report No. 83-41, pp. 1-136.
  7. Japan Railway Technical Research Institute (2003), Design standards for railway structures and commentary (shield tunnels), pp. 91-95.
  8. Korea Concrete Institute (2012), Korea structural concrete design code, pp. 67-68.
  9. Lee, K.M., Ge, X.W. (2001), "The equivalence of a jointed shield-driven tunnel lining to a continuous ring structure", Canadian Geotechnical Journal, Vol. 38, No. 3, pp. 461-483. https://doi.org/10.1139/t00-107
  10. Lee, K.M., Hou, X.Y., Ge, X.W., Tang, Y. (2001), "An analytical solution for a jointed shield-driven tunnel lining", International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 25, No. 4, pp. 365-390. https://doi.org/10.1002/nag.134
  11. Leonhardt, F., Reimann, H. (1965), "Betongelenke (Concrete joints)", German Committee for Reinforced Concrete (DAfStb), Vol. 175, pp. 1-33.
  12. Morgan, H.D. (1961), "A contribution to the analysis of stress in a circular tunnel", Geotechnique, Vol. 11, No. 1, pp. 37-46. https://doi.org/10.1680/geot.1961.11.1.37
  13. Muir Wood, A.M. (1975), "The circular tunnel in elastic ground", Geotechnique, Vol. 25, No. 1, pp. 115-127. https://doi.org/10.1680/geot.1975.25.1.115
  14. Teachavorasinskun, S., Chub-uppakarn, T. (2010), "Influence of segmental joints on tunnel lining", Tunnelling and Underground Space Technology, Vol. 25, No. 4, pp. 490-494. https://doi.org/10.1016/j.tust.2010.02.003
  15. USACE (U.S. Army Corps of Engineers) (1997), Tunnels and shafts in rock, EM 1110-2-2901, pp. 9-9 & 9-10.