• Title/Summary/Keyword: moment fields

Search Result 137, Processing Time 0.023 seconds

Numerical Study on Methane/Air Turbulent Jet Diffusion Flames Near-Extinction Using Conditional Moment Closure Model (CMC model에 의한 near-extinction methane/air turbulent jet diffusion flame의 수치적 모사)

  • Kang, Seung-Tak;Kim, Seung-Hyun;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.11-17
    • /
    • 2002
  • The first-order conditional moment closure (CMC) model is applied to $CH_4$/Air turbulent jet diffusion flames(Sandia Flame D, E and F). The flow and mixing fields are calculated by fast chemistry assumption and a beta function pdf for mixture fraction. Reacting scalar fields are calculated by elliptic CMC formulation. The results for Flame D show reasonable agreement with the measured conditional mean temperature and mass fractions of major species, although with discrepancy on the fuel rich side. The discrepancy tends to increase as the level of local extinction increases. Second-order CMC may be needed for better prediction of these near-extinction flames.

  • PDF

Simulation of Methane Swirl Flame in a Gas Turbine Model Combustor (가스터빈 모사 연소기에서 선회 확산 화염의 연소특성 해석)

  • Joung, Dae-Ro;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.118-125
    • /
    • 2007
  • The firtst-order conditional moment closure (CMC) model is applied to CH4/air swirl diffusion flame in a gas turbine model combustor. The flow and mixing fields are calculated by fast chemistry assumption with SLFM library and a beta function pdf for mixture fraction. RNG k-e model is used to consider the swirl flame in a confined wall. Reacting scalar fields are calculated by elliptic CMC formulation with chemical kinetic mechanism, GRI Mech 3.0. Validation is done against measurement data for mean flow and scalar fields in the model combustor [1]. Results show reasonable agreement with the mean mixture fraction and its variance, while temperature is overpredicted as the level of local extinction increases. The second-order CMC model is needed to consider local extinction with considerable conditional fluctuations near the nozzle.

  • PDF

Retrieving Semantic Image Using Shape Descriptors and Latent-dynamic Conditional Random Fields

  • Mahmoud Elmezain;Hani M. Ibrahem
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.197-205
    • /
    • 2024
  • This paper introduces a new approach to semantic image retrieval using shape descriptors as dispersion and moment in conjunction with discriminative model of Latent-dynamic Conditional Random Fields (LDCRFs). The target region is firstly localized via the background subtraction model. Then the features of dispersion and moments are employed to k-mean procedure to extract object's feature as second stage. After that, the learning process is carried out by LDCRFs. Finally, SPARQL language on input text or image query is to retrieve semantic image based on sequential processes of Query Engine, Matching Module and Ontology Manger. Experimental findings show that our approach can be successful retrieve images against the mammals Benchmark with rate 98.11. Such outcomes are likely to compare very positively with those accessible in the literature from other researchers.

A Study on the Bending and Seismic Performance of High Performance Cold Forming Composite Beam

  • Choi, Young Han;Kim, Sung Bae;Hong, Hyung Ju;Kim, Sang Seup
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1772-1783
    • /
    • 2018
  • Nowadays, the researches about composite structure system are being implemented in various fields, and many steel structures are designed based on that. In this study, the bending and seismic performance of the newly developed high-performance cold forming composite beam are evaluated by several experiments. As a result of the bending performance test, the bending moment of beam was increased stably depending on the depth and plate thickness of beam, and it is considered that the bending moment can be evaluated by the equation of a composite beam design. As a result of the seismic performance test, it was verified that sufficient seismic performance was obtained despite the increase of a negative moment rebar and depth of beam. In addition, the nominal bending moment has obtained the strength above the plastic bending moment, and also the plastic rotation angle has satisfied the requirement of composite intermediate moment frame.

A Central Limit Theorem for Linearly Positive Quadrant Dependent Random Fields

  • Hyun-Chull Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.350-357
    • /
    • 1995
  • In this note, we obtain the central limit theorem for linearly positive quadrant dependent random fields satisfying some assumptions on the covariances and the moment condition $supE\mid X_i\mid^3\;<{\infty}$ The proofs are similar to those of a central limit theorem for associated random field of Cox and Grimmett.

  • PDF

Development of a Six-Axis Force/Moment Sensor with Rectangular Taper Beams for an Intelligent Robot

  • Kim, Gab-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.419-428
    • /
    • 2007
  • This paper describes the development of a six-axis force/moment sensor with rectangular taper beams for an intelligent robot's wrist and ankle. In order to accurately push and pull an object with an intelligent robot's hand, and in order to safely walk with an intelligent robot's foot, the robot's wrist and ankle should measure three forces Fx, Fy, and Fz, and three moments Mx, My, and Mz simultaneously from the mounted six-axis force/moment sensor to the intelligent robot's wrist and ankle. Unfortunately, the developed six-axis force/moment sensor utilized in other industrial fields is not proper for an intelligent robot's wrist and ankle in the size and the rated output of the six-axis force/moment sensor. In this paper, the structure of a six-axis force/moment sensor with rectangular taper beams was newly modeled for an intelligent robot's wrist and ankle, and the sensing elements were designed by using the derived equations, following which the six-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements. Moreover, the characteristic test of the developed sensor was carried out by using the six-component force/moment sensor testing machine. The rated outputs from the derived equations agree well with those from the experiments. The interference error of the sensor is less than 2.87%.

Plastic limit analysis of a clamped circular plate with unified yield criterion

  • Ma, Guowei;Hao, Hong;Iwasaki, Shoji
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.513-525
    • /
    • 1999
  • This paper presents exact close form solutions of plastic limit loads of a clamped circular plate under uniformly distributed load with different loading radii. A unified yield criterion, which includes a family of piecewise linear yield criteria and the commonly adopted yield criteria such as the Tresca criterion and the maximum principal deviatoric stress criterion or the twin shear stress criterion that are its special cases, and the Mises criterion can be approximated by it, is employed in the analysis. The plastic limit loads, moment fields and velocity fields of the clamped circular plate are calculated based on the unified yield criterion. The influences of the yield criteria, the edge effects and the loading radius on the plastic limits of the clamped circular plate are investigated. Analytical results are calculated and compared. The exact close form solutions presented in this paper provide efficient approaches for obtaining plastic limit loads and the corresponding moments and velocities of the clamped circular plates. The previously derived solutions based on the Tresca and the Mises criteria are its special cases.

Fully Plastic Analyses of Unequally Notched Specimens in Bending Moment (굽힘 하중이 작용하는 비대칭노치시편의 완전소성해석)

  • Oh Chang-Kyun;Park Jin-Moo;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.269-278
    • /
    • 2006
  • This paper proposes slip line fields for bending of unequally notched specimens in plane strain that have a sharp crack in one side and a sharp V-notch in the other side. Depending on the back angle, two slip line fields are proposed, from which the limit moment and crack tip stress fields are obtained as a function of the back angle. Excellent agreement between slip line field solutions with those from detailed finite element limit analysis based on non-hardening plasticity provides confidence in the proposed slip line fields. One interesting point is that, for the unequally notched specimen, the difference between the crack tip triaxial stress for tension and that for bending increases significantly with increasing the back angle. This suggests that such a specimen could be potentially useful to investigate the crack tip constraint effect on fracture toughness of materials. In this respect, the possibility of designing a new toughness testing specimen with varying crack tip constraint is discussed.

Numerical Computation of the Backscattering Coefficients of Rice Fields Using the Impedance Boundary Condition, Moment Method and Monte Carlo Method (임피던스 경계 조건, 모멘트 법과 몬테 카를로 방법을 이용한 논의 산란계수 수치적 계산과 측정 데이터와의 비교)

  • Hong, Jin-Young;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.819-827
    • /
    • 2007
  • A numerical algorithm for estimating precise backscattering coefficients of rice fields is proposed and its accuracy is verified in this paper. After a bunch of rice plants above water surface is modeled with a bunch of randomly oriented lossy dielectric bodies above an impedance surface and the equivalent volume currents of the lossy dielectrics are computed using the moment method. Then, the scattered fields of a rice field with many bunches are computed with a Monte Carlo method, and consequently the backscattering coefficient of the rice field is computed for various incidence angles and polarizations. Finally, the backscattering coefficient of a rice field is measured at 1.85 GHz using an R-band scatterometer system, and these experimental data are used to verify the numerical algorithm proposed in this paper. It is found that the numerical computation results agree well with the measurement data.

FMM for the electromagnetic analysis of PCB (PCB의 EM해석을 위한 FMM)

  • Oh, Se-Jun;Oh, Jae-Hyun;Ahn, Chang-Hoi
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.111-112
    • /
    • 2008
  • Induced electromagnetic fields of printed circuit board are computed using method of moment. In this calculation PEC and dielectric boards are considered when exposed to the external fields. The volume and surface integral equations are presented for the electromagnetic wave scattering from plate structures composed of dielectric and conducting objects. To reduce the computing time a fast multipole technique is applied.

  • PDF