DOI QR코드

DOI QR Code

Retrieving Semantic Image Using Shape Descriptors and Latent-dynamic Conditional Random Fields

  • Mahmoud Elmezain (Faculty of Science and Computer Engineering, Taibah University) ;
  • Hani M. Ibrahem (Faculty of Science and Computer Engineering, Taibah University)
  • Received : 2024.10.05
  • Published : 2024.10.30

Abstract

This paper introduces a new approach to semantic image retrieval using shape descriptors as dispersion and moment in conjunction with discriminative model of Latent-dynamic Conditional Random Fields (LDCRFs). The target region is firstly localized via the background subtraction model. Then the features of dispersion and moments are employed to k-mean procedure to extract object's feature as second stage. After that, the learning process is carried out by LDCRFs. Finally, SPARQL language on input text or image query is to retrieve semantic image based on sequential processes of Query Engine, Matching Module and Ontology Manger. Experimental findings show that our approach can be successful retrieve images against the mammals Benchmark with rate 98.11. Such outcomes are likely to compare very positively with those accessible in the literature from other researchers.

Keywords

References

  1. T. Wang and W. Wang, "Research on New Multi-Feature Large-Scale Image Retrieval Algorithm based on Semantic Parsing and Modified Kernel Clustering Method", International Journal of Security and Its Applications Vol. 10, No. 1, pp.139-154, 2016.
  2. J. varghese, T. B. Mary, "High level semantic image retrieval algorithm for Corel database", IRF International Conference, pp. 1-5, 2016.
  3. J. Almazan, J. Revaud, and D. Larlus, " Deep Image Retrieval: Learning Global Representations for Image Search", Computer Vision - ECCV, Volume 9910 of the series Lecture Notes in Computer Science, pp 241-257, 2016.
  4. M. Zand, S. Doraisamy, A. Abdul Halin, "Ontology-Based Semantic Image Segmentation Using Mixture Models and Multiple CRFs", IEEE Transactions on Image Processing, Vol. 25, No. 7, pp. 3223-3248, 2016.
  5. T. S. B.S. Manjunath, P. Salembier, "Introduction to mpeg-7: Multimedia content description interface," Wiley, Chichester, ISBN: 978-0-471-48678-7, 2002.
  6. S. S. E.Rashedi, H.Nezamabadi-pour, "A simultaneous feature adapta-tion and feature selection method for content-based image retrieval systems," Knowledge-Based Systems, Volume 39, pp. 85-94, 2013.
  7. M.S. Meharban and Dr.S. Priya, "A Review on Image Retrieval Techniques," Bonfring International Journal of Advances in Image Processing, Vol. 6, No. 2, pp. 7-10, 2016.
  8. Y. Kleiman, G. Goldberg, Y. Amsterdamer, D. Cohen-Or, " Toward semantic image similarity from crowdsourced clustering," The Visual Computer, Volume 32, Issue 6, pp 1045-1055, 2016.
  9. K. Kumar, Z. ul-abidin, J. Ping Li, and R. A. Shaikh," Content Based Image Retrieval Using Gray Scale Weighted Average Method," International Journal of Advanced Computer Science and Applications, Vol. 7, No. 1, pp. 1-6, 2016.
  10. T. Dacheng, W. Dianhui, and M. Fionn, "Machine Learning in Intelligent Image Processing", In Signal Processing, Vol. 93 (6), pp. 1399-1400, 2013.
  11. Z. Zeng," A Novel Local Structure Descriptor for Color Image Retrieval," Information Journal, Vol. 7, No. 1, pp. 1-14, 2016.
  12. P. P. Mane, N. G. Bawane," An effective technique for the content based image retrieval to reduce the semantic gap based on an optimal classifier technique," Pattern Recognition and Image Analysis, Volume 26, Issue 3, pp 597-607, 2016.
  13. X. Wang, H. Yang, Y. Li, W. Li, and J. Chen,"A New Svm-Based Active Feedback Scheme for Image Retrieval",In Engineering Applications of Artificial Intelligence, Vol. 37, pp. 43-53, 2015.
  14. M. Zhang, K. Zhang, Q.Feng, J. Wang, J. Kong, and Y. Lu "A Novel Image Retrieval Method Based on Hybrid Information Descriptors", Journal of Visual Communication and Image Representation, Vol. 25 (7), pp.1574-1587, 2014.
  15. F. Long, H.J. Zhang, D.D. Feng, "Fundamentals of content-based image retrieval", In D. Feng (Ed.), Multimedia Information Retrieval and Management, Springer, Berlin, 2003.
  16. Y. Rui, T.S. Huang, S.-F. Chang, "Image Retrieval: Current Techniques, Promising Directions, and Open Issues", Journal of Visual Communication Image Representation, Vol. 10 (4), pp. 39-62, 1999.
  17. A. S. N.Singha, K. Singhb, "A novel approach for content based image retrieval," Procedia Technology, vol. 4, pp. 245-250, 2012.
  18. L. L. Z. F. J. Yuea, Zhenbo Li, "Content-based image retrieval using color and texture fused features," Mathematical and Computer Modelling, Vol. 54, pp. 1121-1127, 2011.
  19. E. K. H.N.pour, "Concept learning by fuzzy k-nn classification and relevance feedback for efficient image retrieval," Expert Systems with Applications, vol. 36, pp. 5948-5954, 2009.
  20. S. K. K. S. B. Park, J.W. Lee, "Content-based image classification using a neural network," Pattern Recognition Letters, vol. 25, pp. 287-300, 2004.
  21. Y. Y. Y. Rao, P. Mundur, "Fuzzy svm ensembles for relevance feedback in image retrieval," LNCS, vol. 4071, pp. 350-359, 2006.
  22. P. G. U. Jayaraman, S.Prakash, "An efficient color and texture based iris image retrieval technique," Expert Systems with Applications, Vol. 39, pp. 4915-4926, 2012.
  23. A. J. K. Iqbal, M. O. Odetayo, "Content-based image retrieval approach for biometric security using colour, texture and shape features controlledby fuzzy heuristics," Journal of Computer and System Sciences, vol. 78, pp. 1258-1277, 2012.
  24. S. J. McKenna, Y. Raja, S. Gong, "Tracking colour objects using adaptive mixture models," Journal of Image and Vision Computing 17, (1999), pp. 225-231.
  25. M. H. Yang and N. Ahuja, Gaussian Mixture Model of Human Skin Color and Its Applications in Image and Video Databases, In SPIE/EI&T Storage and Retrieval for Image and Video Databases, pp. 458-466, 1999.
  26. M. Elmezain, Adaptive Foreground with Cast Shadow Segmentation Using Gaussian Mixture Models and Invariant Color Features, International Journal of Engineering Science and Innovative Technology (IJESIT), pp. 438-445, 2013.
  27. Y. Q. Chen, M. S. Nixon and D. W. Thomas, Texture Classification using Statistical Geometric Features, Pattern Recog., 28(4), pp. 537-552, 1995.
  28. M. Hu, Visual Pattern Recognition by Moment Invariants. In IRE Transaction on Information Theory, Vol. 8, No. 2, pp. 179-187, ISSN 0096-1000, 1962.
  29. S. Maitra, Moment Invariants. In Proceeding of the IEEE, Vol. 67, pp. 697-699, 1979.
  30. J. Flusser, T. Suk, Pattern Recognition by Affine Moment Invariants. In Journal of Pattern Recognition, Vol. 26, No. 1, pp. 167-174, 1993.
  31. J. Davis, G. Bradski, Real-time Motion Template Gradients using Intel CVLib. In Proceeding of IEEE ICCV Workshop on Framerate Vision, pp. 1-20, 1999.
  32. T. F. E. Wikipedia, http://en.wikipedia.org/wiki/K-meansclustering.
  33. M. Elmezain, A. Al-Hamadi, LDCRFs - Based Hand Gesture Recognition", IEEE International Conference on SMC, pp.2670-2675, 2012.
  34. Z. Malki, "Ontology-Based Framework for Semantic Text and Image Retrieval Using Chord-length Shape Feature", International Journal of Multimedia and Ubiquitous Engineering, Vol.11, No.11 pp.179-188, 2016.
  35. Z. Malki, "Shape and Geometric Features-based Semantic Image Retrieval Using Multi-class Support Vector Machine", Journal of Theoretical and Applied Information Technology, Vol.95, No 20, pp.5535-5543, 2017.
  36. M. Elmezain, Shape Symmetry-based Semantic Image Retrieval Using Hidden Markov Model, Journal of Theoretical and Applied Information Technology, Vol. 96, pp. 3172-3181,2018.