• 제목/요약/키워드: moment equations

검색결과 529건 처리시간 0.03초

Bridge-type structures analysis using RMP concept considering shear and bending flexibility

  • Hosseini-Tabatabaei, Mahmoud-Reza;Rezaiee-Pajand, Mohmmad;Mollaeinia, Mahmoud R.
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.189-199
    • /
    • 2020
  • Researchers have elaborated several accurate methods to calculate member-end rotations or moments, directly, for bridge-type structures. Recently, the concept of rotation and moment propagation (RMP) has been presented considering bending flexibility, only. Through which, in spite of moment distribution method, all joints are free resulting in rotation and moment emit throughout the structure similar to wave motion. This paper proposes a new set of closed-form equations to calculate member-end rotation or moment, directly, comprising both shear and bending flexibility. Furthermore, the authors program the algorithm of Timoshenko beam theory cooperated with the finite element. Several numerical examples, conducted on the procedures, show that the method is superior in not only the dominant algorithm but also the preciseness of results.

Comparison of Parameter Estimation Methods in A Kappa Distribution

  • Park Jeong-Soo;Hwang Young-A
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.285-294
    • /
    • 2005
  • This paper deals with the comparison of parameter estimation methods in a 3-parameter Kappa distribution which is sometimes used in flood frequency analysis. Method of moment estimation(MME), L-moment estimation(L-ME), and maximum likelihood estimation(MLE) are applied to estimate three parameters. The performance of these methods are compared by Monte-carlo simulations. Especially for computing MME and L-ME, three dimensional nonlinear equations are simplified to one dimensional equation which is calculated by the Newton-Raphson iteration under constraint. Based on the criterion of the mean squared error, L-ME (or MME) is recommended to use for small sample size( n$\le$100) while MLE is good for large sample size.

Numerical study on the resonance response of spar-type floating platform in 2-D surface wave

  • Choi, Eung-Young;Cho, Jin-Rae;Jeong, Weui-Bong
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.37-46
    • /
    • 2017
  • This paper is concerned with the numerical study on the resonance response of a rigid spar-type floating platform in coupled heave and pitch motion. Spar-type floating platforms, widely used for supporting the offshore structures, offer an economic advantage but those exhibit the dynamically high sensitivity to external excitations due to their shape at the same time. Hence, the investigation of their dynamic responses, particularly at resonance, is prerequisite for the design of spar-type floating platforms which secure the dynamic stability. Spar-type floating platform in 2-D surface wave is assumed to be a rigid body having 2-DOFs, and its coupled dynamic equations are analytically derived using the geometric and kinematic relations. The motion-variance of the metacentric height and the moment of inertia of floating platform are taken into consideration, and the hydrodynamic interaction between the wave and platform motions is reflected into the hydrodynamic force and moment and the frequency-dependent added masses. The coupled nonlinear equations governing the heave and pitch motions are solved by the RK4 method, and the frequency responses are obtained by the digital Fourier transform. Through the numerical experiments to the wave frequency, the resonance responses and the coupling in resonance between heave and pitch motions are investigated in time and frequency domains.

A new and simple analytical approach to determining the natural frequencies of framed tube structures

  • Mohammadnejad, Mehrdad;Kazemi, Hasan Haji
    • Structural Engineering and Mechanics
    • /
    • 제65권1호
    • /
    • pp.111-120
    • /
    • 2018
  • This paper presents a new and simple solution for determining the natural frequencies of framed tube combined with shear-walls and tube-in-tube systems. The novelty of the presented approach is based on the bending moment function approximation instead of the mode shape function approximation. This novelty makes the presented solution very simpler and very shorter in the mathematical calculations process. The shear stiffness, flexural stiffness and mass per unit length of the structure are variable along the height. The effect of the structure weight on its natural frequencies is considered using a variable axial force. The effects of shear lag phenomena has been investigated on the natural frequencies of the structure. The whole structure is modeled by an equivalent non-prismatic shear-flexural cantilever beam under variable axial forces. The governing differential equation of motion is converted into a system of linear algebraic equations and the natural frequencies are calculated by determining a non-trivial solution for the system of equations. The accuracy of the proposed method is verified through several numerical examples and the results are compared with the literature.

Prognosis of aerodynamic coefficients of butterfly plan shaped tall building by surrogate modelling

  • Sanyal, Prasenjit;Banerjee, Sayantan;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • 제34권4호
    • /
    • pp.321-334
    • /
    • 2022
  • Irregularity in plan shape is very common for any type of building as it enhances better air ventilation for the inhabitants. Systematic opening at the middle of the facades makes the appearance of the building plan as a butterfly one. The primary focus of this study is to forecast the force, moment and torsional coefficient of a butterfly plan shaped tall building. Initially, Computational Fluid Dynamics (CFD) study is done on the building model based on Reynolds averaged Navier Stokes (RANS) k-epsilon turbulence model. Fifty random cases of irregularity and angle of attack (AOA) are selected, and the results from these cases are utilised for developing the surrogate models. Parametric equations are predicted for all these aerodynamic coefficients, and the training of these outcomes are also done for developing Artificial Neural Networks (ANN). After achieving the target acceptance criteria, the observed results are compared with the primary CFD data. Both parametric equations and ANN matched very well with the obtained data. The results are further utilised for discussing the effects of irregularity on the most critical wind condition.

Moment redistribution of continuous composite I-girder with high strength steel

  • Joo, Hyun Sung;Moon, Jiho;Sung, Ik-Hyun;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.873-887
    • /
    • 2015
  • The continuous composite I-girder should have a sufficient rotation capacity (or ductility) to redistribute the negative bending moment into an adjacent positive bending moment region. However, it is generally known that the ductility of the high strength steel is smaller than that of conventional steel, and application of high strength steel can cause ductility problems in a negative moment region of the I-girder. In this study, moment redistribution of the continuous composite I-girder with high strength steel was studied, where high strength steel with yield stress of 690 MPa was considered (the ultimate stress of the steel was 800 MPa). The available and required rotation capacity of the continuous composite I-girder with high strength steel was firstly derived based on the stress-strain curve of high strength steel and plastic analysis, respectively. A large scale test and a series of non-linear finite element analysis for the continuous composite I-girder with high strength steel were then conducted to examine the effectiveness of proposed models and to investigate the effect of high strength steel on the inelastic behavior of the negative bending moment region of the continuous composite I-girder with high strength steel. Finally, it can be found that the proposed equations provided good estimation of the requited and available rotation capacity of the continuous composite I-girder with high strength steel.

I-거더 불연속 비틀림 브레이싱: 횡-비틂 좌굴 및 비틀림 자유진동 (I-girder with Discrete Torsional Bracing: Lateral-torsional Buckling and Torsional Free Vibration)

  • 웬 간 투안;문지호;김현수;이학은
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2010년도 정기 학술발표대회
    • /
    • pp.85-85
    • /
    • 2010
  • Discrete torsional bracing systems are widely used in practice to increase the strength of I-girders bridges. This paper proposes equations for lateral-torsional buckling strength, torsional natural frequency and stiffness requirements of I-girders with discrete torsional bracings. Firstly, the equations to calculate the critical moment of the I-girder with discrete torsional bracings are introduced. The proposed equations are then compared with the results of finite element analyses and those from previous studies. The equations to calculate the torsional natural frequency are also presented in the same manner. From the results, it is found that proposed equations agree well with results of finite element analyses regardless of the number of bracing points. Finally, the reduced formula for the total torsional stiffness requirement is proposed for the design purpose.

  • PDF

Mathematical Models that Underlie Computer Simulation of the Trawl Doors for Mid-Water Trawls

  • Gabryuk, Victor Ivanovich;Kudakaev, Vasilii Vladimirovich
    • Ocean and Polar Research
    • /
    • 제42권1호
    • /
    • pp.77-88
    • /
    • 2020
  • This paper presents the coordinate systems used for trawl doors modeling, and provides matrix equations of connection between these systems. The projections of the forces acting on the door into axes of various coordinate systems were obtained, which were used in the door equilibrium equations. Six equilibrium conditions for the door as a solid were obtained: formulas that allow for the door area in plan to be determined; its weight in water; its mass; three moment equations for determining the position of the warp and backstrops fastening points to the door with triangular and quadrangular backstrop arrangements. It was found that the moment equilibrium equations of trawl doors are generally incompatible, which was not found by any of the authors who have previously conducted research into trawl doors. Using the Kronecker-Capelli theorem, the compatibility equation is obtained. This equation includes the coordinates of the backstrop fastening points to the door, which means that these points cannot be randomly selected. The technique of determining the warp and backstrops' fastening points position to the door is described. Conditions of directional (by angle of attack) and roll (in angle of roll) stability of the doors' equilibrium are presented. The equations presented in this paper comprise a mathematical model that allows, when designing the doors, to select optimal parameters, as well as to carry out adjustments for trawling purposes to ensure the stable movement of the doors and the entire trawl system.

UNIFORM Lp-CONTINUITY OF THE SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS

  • Kim, Young-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.491-498
    • /
    • 2013
  • This note is concerned with the uniform $L^p$-continuity of solution for the stochastic differential equations under Lipschitz condition and linear growth condition. Furthermore, uniform $L^p$-continuity of the solution for the stochastic functional differential equation is given.

Relativistic Radiation Hydrodynamics of Spherical Accretion

  • PARK MYEONG-GU
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.305-307
    • /
    • 2001
  • Radiation hydrodynamics in high. velocity or high optical-depth flow should be treated under rigorous relativistic formalism. Relativistic radiation hydrodynamic moment equations are summarized, and its application to the near-critical accretion onto neutron star is discussed. The relativistic effects can dominate the dynamics of the flow even when the gravity is weak and the velocity is small. First order equations fail to describe the intricate relativistic effects correctly.

  • PDF