References
- ANSYS Inc. (2020), ANSYS FLUENT 12.0/12.1 Documentation
- ASCE 7-10 (2010), Minimum Design Loads for Buildings and Other Structures, Structural Engineering Institute of the American Society of Civil Engineering, Reston.
- Bairagi, A.K. and Dalui, S.K. (2018), "Comparison of aerodynamic coefficients of setback tall buildings due to wind load", Asian J. Civil Eng., 19(2), 205-221. https://doi.org/10.1007/s42107-018-0018-3.
- Bhattacharyya, B. and Dalui, S.K. (2018), "Investigation of mean wind pressures on 'E'plan shaped tall building", Wind Struct., 26(2), 99-114. https://doi.org/10.12989/was.2018.26.2.099.
- Bitsuamlak, G.T., Bedard, C. and Stathopoulos, T. (2007), "Modeling the effect of topography on wind flow using a combined numerical-neural network approach", J. Comput. Civil Eng., 21(6), 384-392. https://doi.org/10.1061/(ASCE)0887-3801(2007)21:6(384).
- Bhattacharjee, S., Banerjee, S., Majumdar, S.G., Dey, A. and Sanyal, P. (2021), "Effects of irregularity on a butterfly planshaped tall building under wind load", J. Institution Eng. (India): Series A, 102(2), 451-467. https://doi.org/10.1007/s40030-021-00511-6.
- Bayraktar, E., Mierka, O. and Turek, S. (2012), "Benchmark computations of 3D laminar flow around a cylinder with CFX, OpenFOAM and FeatFlow", Int. J. Comput. Sci. Eng., 7(3). 253-266. https://doi.org/10.1504/IJCSE.2012.048245
- Celik, I.B., Ghia, U. and Roache, P.J. (2008), "Procedure for estimation and reporting of uncertainty due to discretisation in CFD applications", J. Fluids Eng. -T ASME, 130(7).
- Chakraborty, S., Dalui, S.K. and Ahuja, A.K. (2014), "Wind load on irregular plan shaped tall building - A case study", Wind Struct., 19(1), 59-73. https://doi.org/10.12989/was.2014.19.1.059.
- Dagnew, A.K. and Bitsuamlak, G.T. (2010, May), "LES evaluation of wind pressures on a standard tall building with and without a neighboring building", In the Fifth International Symposium on Computational Wind Engineering.
- Dalui, S.K. (2008), Wind Effects on Tall Buildings with Peculiar Shapes. Ph.D. Dissertation, IIT Roorkee, India.
- Elshaer, A., Bitsuamlak, G.T. and El Damatty A. (2017), "Enhancing wind performance of tall buildings using corner aerodynamic optimisation", Eng. Struct., 136, 133-148. https://doi.org/10.1016/j.engstruct.2017.01.019.
- Elshaer, A., Aboshosha, H., Bitsuamlak, G., El Damatty, A. and Dagnew, A. (2016), "LES evaluation of wind-induced responses for an isolated and a surrounded tall building", Eng. Struct., 115, 179-195. https://doi.org/10.1016/j.engstruct.2016.02.026.
- Wright, N. (2004), Recommendations on the Use of CFD in Wind Engineering. Impact of.
- Gomes, M.G., Rodrigues, A.M. and Mendes, P. (2005), "Experimental and numerical study of wind pressures on irregular-plan shapes", J. Wind Eng. Ind. Aerod., 93(10), 741-756. https://doi.org/10.1016/j.jweia.2005.08.008.
- Hagan, M.T. and Menhaj, M.B. (1994), "Training feedforward networks with the Marquardt algorithm", IEEE Transact. Neural Networks, 5(6), 989-993. https://doi.org/10.1109/72.329697.
- He, Y., Zhang, L., Chen, Z. and Li, C. Y. (2022), "A framework of structural damage detection for civil structures using a combined multi-scale convolutional neural network and echo state network", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01584-4.
- Herrmann, B., Baddoo, P.J., Semaan, R., Brunton, S.L. and McKeon, B.J. (2021), "Data-driven resolvent analysis", J. Fluid Mech., 918.
- Huang, S., Li, Q.S., Xu, S. (2007), "Numerical evaluation of wind effects on a tall steel building by CFD", J. Constr. Steel Res. 63, 612-627. https://doi.org/10.1016/j.jcsr.2006.06.033
- Hunter, D., Yu, H., Pukish III, M.S., Kolbusz, J. and Wilamowski, B.M. (2012), "Selection of proper neural network sizes and architectures-A comparative study", IEEE Transact. Ind. Informatic., 8(2), 228-240. https://doi.org/10.1109/TII.2012.2187914.
- IS 875 (2015), Indian Standard Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures, Part 3 (Wind Loads), Bureau of Indian Standards, New Delhi
- Karsoliya, S. (2012), "Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture", Int. J. Eng. Trends Technol., 3(6), 714-717.
- Levenberg, K. (1944), "A method for the solution of certain non-linear problems in least squares", Quarter. Appl. Mathem., 2(2), 164-168. https://doi.org/10.1090/qam/10666
- Kim, Y.C. and Kanda, J. (2010a), "Characteristics of aerodynamic forces and pressures on square plan buildings with height variations", J. Wind Eng. Ind. Aerod., 98, 449-465. https://doi.org/10.1016/j.jweia.2010.02.004
- Kim, Y.C. and Kanda, J. (2010b), "Effects of taper and set-back on wind force and wind-induced response of tall buildings", Wind Struct., 13(6), 499-517. https://doi.org/10.12989/was.2010.13.6.499.
- Kim, Y.M. and You, K.P. (2002), "Dynamic responses of a tapered tall building to wind load", J. Wind Eng. Ind. Aerod., 90, 1771-1782. https://doi.org/10.1016/S0167-6105(02)00286-6.
- Kim, Y.M., You, K.P. and Ko, N.H. (2008), "Across-wind response of an aeroelastic tapered tall building", J. Wind Eng. Ind. Aerod., 96, 1307-1319. https://doi.org/10.1016/j.jweia.2008.02.038.
- Kumar, D. and Dalui, S.K. (2017), "Effect of internal angles between limbs of cross plan shaped tall building under wind load", Wind Struct., 24(2), 95-118. https://doi.org/10.12989/was.2017.24.2.095.
- Li, C.Y., Chen, Z., Tse, T.K., Weerasuriya, A.U., Zhang, X., Fu, Y. and Lin, X. (2021), "Establishing direct phenomenological connections between fluid and structure by the Koopman-Linearly Time-Invariant analysis", Phys. Fluids, 33(12), 121707. https://doi.org/10.1063/5.0075664.
- Li, C.Y., Chen, Z., Tse, T.K., Weerasuriya, A.U., Zhang, X., Fu, Y. and Lin, X. (2022), "A parametric and feasibility study for data sampling of the dynamic mode decomposition: range, resolution, and universal convergence states", Nonlinear Dyn., 1-25. https://doi.org/10.1007/s11071-021-07167-8.
- Li, Y. and Li, Q. (2016), "Across-wind dynamic loads on L-shaped tall buildings", Wind Struct., 23(5), 385-403. https://doi.org/10.12989/was.2016.23.5.385.
- Lo, Y.L., Kim, Y.C. and Li, Y.C. (2016), "Downstream interference effect of high-rise buildings under turbulent boundary layerflow", J. Wind Eng. Ind. Aerod., 159, 19-35. https://doi.org/10.1016/j.jweia.2016.10.002.
- Mallick, M., Mohanta, A., Kumar, A. and Patra, K. (2020), "Gene-expression programming for the assessment of surface mean pressure coefficient on building surfaces", Build. Simulat., 13(2), 401-418. https://doi.org/10.1007/s12273-019-0583-8.
- Mandal, S., Dalui, S.K. and Bhattacharya, S. (2021), "Wind induced response of corner modified 'U' plan shaped tall building", Wind Struct., 32(6), 521-537. https://doi.org/10.12989/was.2021.32.6.521.
- Marquardt, D.W. (1963), "An algorithm for least-squares estimation of nonlinear parameters", J. Soc. Ind. Appl. Mathem., 11(2), 431-441. https://doi.org/10.1137/0111030.
- Meng, F.Q., He, B.J., Zhu, J., Zhao, D.X., Darko, A. and Zhao, Z. Q. (2018), "Sensitivity analysis of wind pressure coefficients on CAARC standard tall buildings in CFD simulations", J. Build. Eng., 16, 146-158. https://doi.org/10.1016/j.jobe.2018.01.004.
- Muehleisen, R.T. and Patrizi, S. (2013), "A new parametric equation for the wind pressure coefficient for low-rise buildings", Energy Build., 57, 245-249. https://doi.org/10.1016/j.enbuild.2012.10.051.
- Mukherjee, S., Chakraborty, S., Dalui, S.K. and Ahuja, A.K. (2014), "Wind-induced pressure on "Y" plan shape tall building. Wind Struct., 19(5), 523-540. https://doi.org/10.12989/was.2014.19.5.523
- Nazghelichi, T., Aghbashlo, M. and Kianmehr, M.H. (2011), "Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying", Comput. Electronic. Agric., 75(1), 84-91. https://doi.org/10.1016/j.compag.2010.09.014.
- Obasaju, E. (1992), "Measurement of forces and base overturning moments on the CAARC tall building model in a simulated atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 40, 103-126. https://doi.org/10.1016/0167-6105(92)90361-D.
- Paul, R. and Dalui, S.K. (2016), "Wind effects on "Z" plan-shaped tall building: a case study", Int. J. Adv. Struct. Eng., 8, 319-335. https://doi.org/10.1007/s40091-016-0134-9
- Paul, R. and Dalui, S. (2021), "Shape optimization to reduce wind pressure on the surfaces of a rectangular building with horizontal limbs", Periodica Polytechnica Civil Eng., 65(1), 134-149. https://doi.org/10.3311/PPci.16888.
- Paul, R. and and Dalui, S.K. (2020), "Optimisation of alongwind and crosswind force coefficients on a tall building with horizontal limbs using surrogate modeling", Struct. Des. Tall Spec. Build., e1830. https://doi.org/10.3311/PPci.16888.
- Raissi, M., Wang, Z., Triantafyllou, M.S. and Karniadakis, G.E. (2019), "Deep learning of vortex-induced vibrations", J. Fluid Mech., 861, 119-137. https://doi.org/10.1017/jfm.2018.872.
- Rajasekarababu, K.B., Vinayagamurthy, G. and Selvi Rajan, S. (2019), "Experimental and computational investigation of outdoor wind flow around a setback building", Build. Simul., 12, 891-904. https://doi.org/10.1007/s12273-019-0514-8.
- Rowley, C.W., Mezic, I., Bagheri, S., Schlatter, P. and Henningson, D.S. (2009), "Spectral analysis of nonlinear flows", J. Fluid Mech., 641, 115-127. https://doi.org/10.1017/S0022112009992059.
- Sanyal, P. and Dalui, S.K. (2018), "Effects of courtyard and opening on a rectangular plan shaped tall building under wind load", Int. J. Adv. Struct. Eng., 10(2), 169-188. https://doi.org/10.1007/s40091-018-0190-4
- Sanyal, P. and Dalui, S.K. (2020), "Effect of corner modifications on "Y" plan shape tall building under wind load", Wind Struct., 30(3), 245-260. https://doi.org/10.12989/was.2020.30.3.245.
- Sanyal, P. and Dalui, S.K. (2021a), "Effects of internal angle between limbs of "Y" plan shaped tall building under wind load", J. Build. Eng., 33(2021), 101843. https://doi.org/10.1016/j.jobe.2020.101843
- Sanyal, P. and Dalui, S.K. (2021b), "Effects of side ratio for 'Y'plan shaped tall building under wind load", Build. Simulat., 14(4), 1221-1236. https://doi.org/10.1007/s12273-020-0731-1
- Sanyal, P. and Dalui, S.K. (2022), "Forecasting of aerodynamic coefficients of tri-axially symmetrical Y plan shaped tall building based on CFD data trained ANN", J. Build. Eng., 47, 103889. https://doi.org/10.1016/j.jobe.2021.103889.
- Schmid, P.J. (2010), "Dynamic mode decomposition of numerical and experimental data", J. Fluid Mech., 656, 5-28. https://doi.org/10.1017/S0022112010001217.
- Schmidt, O.T., Towne, A., Rigas, G., Colonius, T. and Bres, G.A. (2018), "Spectral analysis of jet turbulence", J. Fluid Mech., 855, 953-982. https://doi.org/10.1017/jfm.2018.675.
- Singh, J. and Roy, A.K. (2019), "Effects of roof slope and wind direction on wind pressure distribution on the roof of a square plan pyramidal low-rise building using CFD simulation", Int. J. Adv. Struct. Eng., 11(2), 231-254 https://doi.org/10.1007/s40091-019-0227-3
- Systat Stware Inc. (2002), TableCurve 3D V4.0
- Tanaka, H. and Lawen, N. (1986), "Test on the CAARC standard tall building model with a length scale of 1: 1000", J. Wind Eng. Ind. Aerod., 25(1), 15-29. https://doi.org/10.1016/0167-6105(86)90102-9.
- Taranath, B.S. (2016), Tall Building Design: Steel, Concrete and Composite Systems, CRC Press, United States of America.
- Thordal, M. and Koss, H. (2019), "Review for practical application of CFD for the determination of wind load on high-rise buildings", J. Wind Eng. Ind. Aerod., 186. 155-168. https://doi.org/10.1016/j.jweia.2018.12.019.
- Towne, A., Schmidt, O.T. and Colonius, T. (2018), "Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis", J. Fluid Mech., 847, 821-867. https://doi.org/10.1017/jfm.2018.283.
- Verma, S.K., Kamal, K. and Harjeet, K. (2014), "Estimation of Coefficient of Pressure in High Rise Buildings Using Artificial Neural Network", Int. J. Eng. Res. Appl., 4(4), 105-110.
- Vyavahare, A.Y., Godbole, P.N. and Nikose, T. (2012), "Analysis of tall building for across wind response", Int. J. Civil Struct. Eng., 2(3), 679-986.
- Xing, F., Mohotti, D. and Chauhan, K. (2018), "Study on localised wind pressure development in gable roof buildings having different roof pitches with experiments, RANS and LES simulation models", Build. Environ., 143, 240-257. https://doi.org/10.1016/j.buildenv.2018.07.026.
- Zhang, X., Weerasuriya, A.U., Wang, J., Li, C.Y., Chen, Z., Tse, K. T. and Hang, J. (2022), "Cross-ventilation of a generic building with various configurations of external and internal openings", Build. Environ., 207, 108447. https://doi.org/10.1016/j.buildenv.2021.108447.