• Title/Summary/Keyword: molybdenum disulfide

Search Result 45, Processing Time 0.027 seconds

Controllable Growth of Single Layer MoS2 and Resistance Switching Effect in Polymer/MoS2 Structure

  • Park, Sung Jae;Chu, Dongil;Kim, Eun Kyu
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.129-132
    • /
    • 2017
  • We report a chemical vapor deposition approach and optimized growth condition to the synthesis of single layer molybdenum disulfide ($MoS_2$). Obtaining large grain size with continuous $MoS_2$ atomically thin films is highly responsible to the growth distance between molybdenum trioxide source and receiving silicon substrate. Experimental results indicate that triangular shape $MoS_2$ grain size could be enlarged up to > 80um with the precisely controlled the source-to-substrate distance under 7.5 mm. Furthermore, we demonstrate fabrication of a memory device by employing poly(methyl methacrylate) (PMMA) as insulating layer. The fabricated devices have a PMMA-$MoS_2$/metal configuration and exhibit a bistable resistance switching behavior with high/low-current ratio around $10^3$.

Properties, Preparation, and Energy Storage Applications of Two-dimensional Molybdenum Disulfide (2차원 이황화몰리브덴의 성질, 제조 및 에너지 저장 소자 응용)

  • Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.133-140
    • /
    • 2019
  • Two-dimensional (2D) ultrathin molybdenum dichalcogenides $MoS_2$ has gained a great deal of attention in energy conversion and storage applications because of its unique morphology and property. The 2D $MoS_2$ nanosheets provide a high specific surface area, 2D charge channel, sub-nanometer thickness, and high conductivity, which lead to high electrochemical performances for energy storage devices. In this paper, an overview of properties and synthetic methods of $MoS_2$ nanosheets for applications of supercapacitors and rechargeable batteries is introduced. Different phases triangle prismatic 2H and metallic octahedral 1T structured $MoS_2$ were characterized using various analytical techniques. Preparation methods were focused on top-down and bottom-up approaches, including mechanical exfoliation, chemical intercalation and exfoliation, liquid phase exfoliation by the direct sonication, electrochemical intercalation exfoliation, microwave-assisted exfoliation, mechanical ball-milling, and hydrothermal synthesis. In addition, recent applications of supercapacitors and rechargeable batteries using $MoS_2$ electrode materials are discussed.

Graphene Characterization and Application for Field Effect Transistors

  • Yu, Young-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.72-72
    • /
    • 2012
  • The next generation electronics need to not only be smaller but also be more flexible. To meet such demands, electronic devices using two dimensional (2D) atomic crystals have been studied intensely. Especially, graphene which have unprecedented performance fulfillments in versatile research fields leads a parade of 2D atomic crystals. In this talk, I will introduce the electrical characterization and applications of graphene for prominently electrical transistors realization. Even the rising 2D atomic crystals such as hexagonal boron nitride (h-BN), molybdenum disulfide (MoS2) and organic thin film for field effect transistor (FET) toward competent enhancement will be mentioned.

  • PDF

Artificial Photosynthesis System Containing CO2 Conversion Process (이산화탄소 변환 과정이 포함된 인공 광합성 시스템)

  • Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • This paper presents an integrated photochemical reaction system (i.e., an artificial leaf) that uses earth-abundant catalysts for artificial photosynthesis with a carbon dioxide ($CO_2$) fixation process. The performance of the system was investigated in terms of the energy capture and conversion capabilities. A wireless configuration was achieved by directly doping cobalt oxide as an oxygen-evolving catalyst for water splitting reaction on the illuminated surface of photovoltaic (PV) cell, as well as molybdenum disulfide ($MoS_2$) as an efficient catalyst for $CO_2$ reduction on the back substrate surfaces of the PV cell. The system produces hydrogen and carbon monoxide (CO) as sustainable fuels (i.e., synthesis gas) at around 4.5% efficiency, which implies more than 75% catalytic efficiency at the cathode. The process of solar-driven $CO_2$ conversion and water-splitting reaction is contained in one system, which is one step closer to the successful realization of artificial photosynthesis.

$MoS_2$ 박막 증착을 위한 Mo 전구체 특성 평가

  • Mun, Ji-Hun;Park, Myeong-Su;Yun, Ju-Yeong;Gang, Sang-U;Sin, Jae-Su;Lee, Chang-Hui;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.252-252
    • /
    • 2013
  • 최근 그래핀, hexagonal boron nitride (h-BN) 및 $MoS_2$ (molybdenum disulfide)와 같은 2차원 결정 물질들은 무어의 법칙(Moore's Law)를 뛰어넘어 계속적인 소자의 소형화를 가능케 하고 또한 대면적, 저비용 소자 개발을 가능케 하는 우수한 특성을 가진 차세대 반도체 트랜지스터 소재로 각광받고 있다. $MoS_2$는 bulk 상태일 때는 1.2 eV의 indirect 밴드갭을 가지지만 단층형태일 때는 1.8 eV의 direct 밴드갭을 가지며 dielectric screening 기법등을 통해 mobility를 향상시킬 수 있는 것으로 연구된 바 있다. 본 연구에서는 화학기상증착 (chemical vapor deposition)법을 이용하여 $MoS_2$ 박막을 형성하기 위한 기초연구인 Mo 전구체의 특성평가 및 적합한 공정조건 개발 연구를 수행하였다. 사용한 전구체는 $Mo(CO)_6$ (Molybdenum hexacarbonyl)이고, 온도 및 압력, 반응기체(H2 S, Hydrogen sulfide) 유량 등의 공정 조건 변화에 따른 거동을 Fourier transform infrared spectroscopy (FT-IR) 시스템을 사용하여 측정하였다. 또한 $Mo(CO)_6$의 분자구조를 상용 프로그램인 Gaussian으로 시뮬레이션 하여 실제 FT-IR 측정 결과값과 비교 분석하였다.

  • PDF

화학기상증착법을 이용한 $MoS_2$ 증착에 관한 연구

  • Mun, Ji-Hun;Kim, Dong-Bin;Hwang, Chan-Yong;Gang, Sang-U;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.116.2-116.2
    • /
    • 2013
  • 최근 그래핀, hexagonal boron nitride (h-BN) 및 $MoS_2$ (molybdenum disulfide)와 같은 2차원 결정 물질들은 무어의 법칙 (Moore's Law)를 뛰어넘어 계속적인 소자의 소형화를 가능케 하고 또한 대면적, 저비용 소자 개발을 가능케 하는 우수한 특성을 가진 차세대 반도체 트랜지스터 소재로 각광받고 있다. $MoS_2$는 bulk 상태일 때는 1.2 eV의 indirect 밴드갭을 가지지만 단층형태일 때는 1.8 eV의 direct 밴드갭을 가지며 dielectric screening 기법 등을 통해 mobility를 향상시킬 수 있는 것으로 연구된 바 있다. 본 연구에서는 화학기상증착(chemical vapor deposition, CVD)법을 이용하여 $MoS_2$박막을 형성하기 위한 기초연구인 Mo전구체의 특성 평가 및 적합한 공정조건 개발 연구를 수행하였다. 사용한 전구체는 $Mo(CO)^6$ (Molybdenum hexacarbonyl)이고, 온도 및 압력, 반응기체($H_2S$, Hydrogen sulfide) 유량 등의 공정 조건 변화에 따른 거동을 Fourier transform infrared spectroscopy (FT-IR) 시스템을 사용하여 측정하였다. 또한 $Mo(CO)^6$의 분자구조를 상용 프로그램인 Gaussian으로 시뮬레이션 하여 실제 FT-IR 측정 결과값과 비교 분석하였다. 화학기상증착법을 이용한 $MoS_2$ 증착조건 최적화를 위하여 다양한 온도, 유량, 압력, 및 기판 종류에 대하여 증착 실험을 수행하였으며, 증착된 샘플은 scanning electron microscope (SEM), Raman spectroscopy를 이용하여 분석하였다.

  • PDF

Reliable charge retention in nonvolatile memories with van der Waals heterostructures

  • Qiu, Dongri;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.282.1-282.1
    • /
    • 2016
  • The remarkable physical properties of two-dimensional (2D) semiconducting materials such as molybdenum disulfide ($MoS_2$) and tungsten disulfide ($WS_2$) etc. have attracted considerable attentions for future high-performance electronic and optoelectronic devices. The ongoing studies of $MoS_2$ based nonvolatile memories have been demonstrated by worldwide researchers. The opening hysteresis in transfer characteristics have been revealed by different charge confining layer, for instance, few-layer graphene, $MoS_2$, metallic nanocrystal, hafnium oxide, and guanine. However, limited works built their nonvolatile memories using entirely of assembled 2D crystals. This is important in aspect view of large-scale manufacture and vertical integration for future memory device engineering. We report $WS_2$ based nonvolatile memories utilizing functional van der Waals heterostructure in which multi-layered graphene is encapsulated between $SiO_2$ and hexagonal boron nitride (hBN). We experimentally observed that, large memory window (20 V) allows to reveal high on-/off-state ratio (>$10^3$). Moreover, the devices manifest perfect retention of 13% charge loss after 10 years due to large graphene/hBN barrier height. Interestingly, the performance of our memories is drastically better than ever published work related to $MoS_2$ and black phosphorus flash memory technology.

  • PDF

Performances of Plastic Pulley with High Mechanical Properties and Low Friction

  • Kim, Namil;Lee, Jung-Seok;Hwang, Byung-Kook;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Juho
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.135-141
    • /
    • 2019
  • Polyphenylene sulfide (PPS) was filled with glass fiber (GF), aramid fiber (AF), and solid lubricants to improve the mechanical properties and wear resistance. The addition of GF effectively enhanced the tensile strength, flexural modulus, and impact strength of PPS, while solid lubricants such as polytetrafluoroethylene (PTFE), molybdenum disulfide ($MoS_2$), and tungsten disulfide ($WS_2$) lowered the friction coefficients of the composites to below 0.3. The ball nut and motor pulley of the electric power steering (EPS) were manufactured using the PPS composites, and feasibility was ascertained thereafter by conducting the durability test. The composites filled with GF and AF showed high mechanical strength, but slip occurred at the interface between the pulley and belt while testing above $50^{\circ}C$. When small amounts of lubricants were added, the slip was no longer detected because of the suppression of friction heat. It is realized that the low friction as well as high mechanical properties is important to ensure the reliability of plastic pulleys.

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.287.1-287.1
    • /
    • 2013
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reductionsulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of single-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF

Thermo-Mechanica1 Stress Analyses of Part with Coated Layer under Contact Load Using Partial Model (부분 모델을 이용한 접촉하중을 받는 코팅층이 있는 부재의 열적/기계적 응력해석)

  • 권영두;김석삼;신세현;추상우
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.228-234
    • /
    • 2002
  • Generally, space structures are subjected to severe situations, such as, sublimation, strong evaporation of lubricants, thermal stresses, high temperature gradients, irradiation, impacts by microscopic meteorites, and other factors. Recent]y, various kinds of coatings are applied to the parts under heavy contact stresses, in order to insure long wear-free lives and/or reduce friction coefficients. In space structures, molybdenum disulfide is using frequently. Moreover TiN, Al$_2$O$_3$, PTFE(Poly Tetra Fluor Ethylene) are introduced recently for space structure. In this part we are going to apply the partial model method, developed in reference[11] to analyze part with coated layer. In referencer[l1], we compute the reasonable size of partial model and aspect ratio. Using these data, we analyze the structures coated with TiN, Al$_2$O$_3$, PTFE under contact load, temperature and crack model . Beside, we consider the stress analysis under time dependent load and transient thermal effect.