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1. Introduction1)

Ever-increasing demand for energy to address depletion of fossil fuels 

significantly require the development of renewable and sustainable en-

ergy storage and conversion systems[1-4]. Rechargeable and storage 

batteries or secondary cells, can be charged, and discharged into a 

load, and recharged many times for use, which are designed to deliver 

high energy and power densities in many energy applications[5-8]. The 

rechargeable batteries are used in portable electronics and power sup-

plies, electric vehicles, and energy storage power stations, because of 

their high energy density, low cost, lightweight, size, and long lifetime. 

A lithium-ion battery is one of the most developed batteries, which 

consists of anode (e.g., graphite) and cathode (e.g., lithium metal ox-

ide) separated by the electrolyte. Recently, in order to increase energy 
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performance of Li-ion batteries and address limitation of lithium re-

sources, sodium and magnesium-ion batteries have attracted a great 

deal of attention because of their low cost, natural abundance, and sim-

ilar insertion mechanism to lithium ions[9-12]. Supercapacitors or elec-

trochemical capacitors store electrical charges by typically two mecha-

nisms: (1) formation of an electrical double layer between electrode and 

electrolyte and (2) reversible Faradaic reaction at the electrode/electro-

lyte interface[13,14]. Compared to rechargeable batteries, supercapacitors 

are capable of delivering higher power density, higher rate capability, 

and more stable cycle life. However, most supercapacitors suffered 

from lower energy densities than batteries[15-19]. 

Ultrathin and layered two-dimensional (2D) nanosheets, especially, 

graphene materials, have drawn tremendous attention and shown great 

promise for a wide range of applications[20,21]. Since graphene mate-

rials have shown a great potential for the application of energy storage 

systems, and other 2D materials, such as, metal oxides, hydroxides, di-

chalcogenides, and carbides have been extensively investigated[22-25]. 

Among them, molybdenum disulfide (MoS2) is widely interested in 

many applications because of its unique 2D morphology and phys-
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Abstract
Two-dimensional (2D) ultrathin molybdenum dichalcogenides MoS2 has gained a great deal of attention in energy conversion 
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surface area, 2D charge channel, sub-nanometer thickness, and high conductivity, which lead to high electrochemical perform-
ances for energy storage devices. In this paper, an overview of properties and synthetic methods of MoS2 nanosheets for 
applications of supercapacitors and rechargeable batteries is introduced. Different phases triangle prismatic 2H and metallic 
octahedral 1T structured MoS2 were characterized using various analytical techniques. Preparation methods were focused on 
top-down and bottom-up approaches, including mechanical exfoliation, chemical intercalation and exfoliation, liquid phase ex-
foliation by the direct sonication, electrochemical intercalation exfoliation, microwave-assisted exfoliation, mechanical 
ball-milling, and hydrothermal synthesis. In addition, recent applications of supercapacitors and rechargeable batteries using 
MoS2 electrode materials are discussed.
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icochemical properties[26-29]. The 2D morphology enables MoS2 to 

provide high specific surface area compared to its bulk counterpart. 

The ultrathin layers of MoS2 allow to high flexibility and strong me-

chanical strength in contrast to MoS2 bulk materials. The attractive 

merits of MoS2 have been demonstrated in many applications of elec-

tronics, sensors, and biomedicine. In particular, the high conductivity, 

large surface area, and active edge sites of MoS2 made it a promising 

electrode material for development of energy conversion and storage 

applications, such as, rechargeable batteries, supercapacitors, electro-

catalytic reaction, and solar cells.

In this article, we reviewed unique structures and properties and 

preparation methods of MoS2 nanosheets. Various experimental techni-

ques were introduced to investigate MoS2 nanosheets. We summarized 

the recent synthetic methods for preparation of MoS2 materials to ach-

ieve nanostructure, extraordinary properties, and enhanced electro-

chemical performances, including mechanical exfoliation, chemical in-

tercalation and exfoliation, liquid phase exfoliation by direct sonication, 

electrochemical intercalation exfoliation, microwave-assisted exfolia-

tion, mechanical ball-milling, and hydrothermal synthesis. Following 

that, the main applications of MoS2 materials are reviewed, involving 

energy storage systems of supercapacitors and rechargeable batteries.

2. Properties of MoS2

Natural MoS2 materials have a crystalline structure of trigonal pris-

matic or an octahedral Mo coordination[30]. Particularly, MoS2 has dif-

ferent polymorphs depending on the electron filling in the valence 

d-orbitals of Mo atoms, involving 3R of rhombohedral polymorph with 

three-layers and Mo atoms in trigonal prismatic coordination, 2H of 

hexagonal with two-layers and Mo atoms in trigonal prismatic coordi-

nation, and 1T of trigonal with one-layer and Mo atoms in octahedral 

coordination[31]. MoS2 shows diverse electrical and optical properties 

according to the different atomic arrangement of MoS2. The 2H MoS2 

is naturally abundant and stable, and exhibits indirect bandgap of 1.29 

eV for bulk state and direct bandgap of 1.90 eV for monolayer state[32]. 

The 1T MoS2 shows hydrophilic and metallic nature; the electrical con-

ductivity of 1T is 107 times higher than 2H phase. The 1T MoS2 has 

a similar electrical conductivity with metallic materials of copper and 

gold. The attractive features of 1T MoS2 have made it as a promising 

electrode material in applications of energy storage and conversion.

The transformation of 2H into 1T phase in MoS2 can be charac-

terized by various analytical techniques, such as, X-ray diffraction 

(XRD), X-ray photoelectron spectroscopy (XPS), transmission electron 

microscopy (TEM), Raman, photoluminescence (PL), extended X-ray 

absorption fine structure (EXAFS), and ultraviolet-visible (UV-vis)[30]. 

The measurement of XRD using bulk 2H MoS2 and 1T MoS2 samples 

provides exfoliation states and crystalline structure of MoS2. The ex-

foliated 1T MoS2 compared to 2H MoS2 exhibits reduced (002) peak 

with blue shift, indicating expansion of the interlayer spacing and low 

crystallinity. In addition, most XRD peaks of 1T MoS2 are reduced 

when MoS2 sheets are exfoliated. Raman spectroscopy provides a clear 

evidence for the formation of 1T phase MoS2. The 2H MoS2 shows 

characteristic peaks of 380 cm-1 (E1
2g mode associated with opposite 

vibration of two S atoms with respect to the Mo atom) and 400 cm-1 

(A1
g mode associated with the vibration of only S atoms in opposite 

directions)[30]. Compared to 2H MoS2, the 1T MoS2 shows prominent 

peaks at around 150, 220, 280, 330, and 400 cm-1, corresponding J1, 

J2, E1
g, J3, and A1

g modes, respectively. As the 1T phase increases, E1
g, 

and A1
g decrease, while J1, J2, and J3 modes increase[30]. This ob-

servation in Raman spectroscopy indicates the presence of the as-syn-

thesized 1T phase in MoS2 sheets. The atomic arrangement of Mo and 

S between the triangle prismatic and octahedral coordination structures 

differ from each other. Hence, Mo 3d and S 2p XPS investigation is 

one of the most promising way to detect 1T phase of MoS2. In addi-

tion, peak fitting of Mo 3d and S 2p XPS provides accurate 1T con-

tents of MoS2. The different atomic structures of MoS2 result in differ-

ent optical properties, and thus UV-vis absorption spectrum of 2H 

MoS2 and 1T MoS2 are a good indicator to distinguish phases of 

MoS2. Typically, 2H MoS2 shows three peaks at 440 (attributed to the 

quantum effect of small lateral-sized MoS2 sheets), 610, and 650 nm 

(attributed to the energy split large lateral dimensions)[33]. The for-

mation of 1T phase removes the characteristic peaks of 2H MoS2, in-

dicating metallic properties of 1T MoS2.

3. Preparation of MoS2

Tremendous efforts have been attempted to synthesize MoS2 nano-

sheets in terms of production cost and scalability. Various methods 

have been employed to prepare MoS2 in order to achieve nanostructure, 

special properties, and superior performance, including mechanical ex-

foliation, chemical intercalation and exfoliation, liquid phase exfolia-

tion by direct sonication, electrochemical intercalation exfoliation, mi-

crowave-assisted exfoliation, mechanical ball-milling, and hydrothermal 

synthesis[34-46]. 

3.1. Top-down approaches for preparation of MoS2

Similar to graphene materials, MoS2 nanosheets can be obtained 

from mechanical exfoliation of bulk layered MoS2 powers. Novoselov 

and co-workers successfully exfoliated MoS2 into single-layer MoS2 

nanosheet with a high quality of crystalline structure and micro-sized 

lateral size, but the very small quantities are limited to many practical 

applications[36]. In order to enhance production rate of MoS2 nano-

sheets, lithium ion-intercalation and exfoliation methods have ex-

tensively been developed[38,39]. Typically, this process is carried out 

in an atmosphere protected by inert gas, such as, an argon-filled glove 

box, using n-butyl-lithium at a certain temperature for a certain time 

of 5~70 h (Figure 1). The lithium-ion intercalation can be accelerated 

by the assistance of sonication, microwaves, and ball-milling. And also, 

a lithium-ion battery system was attempted to intercalate Li-ion into 

layered MoS2 sheets, in which bulk MoS2 and lithium foil were used 

as the cathode and anode, respectively[37]. By discharging, Li-ion ef-

fectively intercalates into bulk MoS2 sheets, thereby achieving efficient 

exfoliation of MoS2. Other alkali metals have been employed to ex-

foliate MoS2. The use of alkali metals as the intercalants are basically



1352차원 이황화몰리브덴의 성질, 제조 및 에너지 저장 소자 응용

Appl. Chem. Eng., Vol. 30, No. 2, 2019

Figure 2. Schematic illustration of adsorption of CO2 on the single- 
layer MoS2 and TEM image of 1T and 2H phases of MoS2 sheet 
(Reprinted with permission form ref. 42. Copyright (2016) American 
Chemical Society).

electron donors, and thus inducing strain force by the electron transfer 

from the intercalant. The strain force leads to facilitate the phase tran-

sition of MoS2 from 2H to 1T[34]. Compared to 2H MoS2, 1T MoS2 

exhibits higher electrical conductivity, larger spacing distance, and 

more abundant active site surfaces. These features of 1T MoS2 are es-

pecially favorable to the electrochemical applications that require high 

electron and ion conductivity. The 1T phase of MoS2 was confirmed 

by various analytical instruments, such as, TEM, XRD, Raman, STEM, 

and XPS.

On the other hand, other top-down approaches have been developed. 

The mechanical ball-milling process can be used to prepare MoS2 

nanosheets without any additives or any other additional treatment for 

several hours. In particular, the milling time influenced the size of 

MoS2 and phase transition (2H to 1T)[40]. The use of microwaves was 

also reported by Reshmi et al. for exfoliating MoS2 and phase con-

version of 2H into 1T[41]. Recently, supercritical CO2-assisted exfolia-

tion method has been also developed by Xu and coworkers (Figure 

2)[42]. The use of supercritical CO2 gas effectively exfoliated bulk 

MoS2 into mono- or few-layer MoS2 nanosheets. The pre-dispersion of 

MoS2 flakes in a mixture of ethanol and water was treated in super-

critical CO2 gas condition at 80 ℃ and 16 MPa under stirring for 6 

h. The introduction of CO2 gas induced stain forces into MoS2 sheets, 

and thus leading to phase transform of the 2H into the 1T phase of 

MoS2. Because the 1T phase of MoS2 is important in applications of 

electrochemical devices, numerous methods have been developed to 

control the phase of MoS2. The phase transition of 2H and 1T can be 

occurred by mechanical tensile and compressive strains onto the MoS2 

surfaces. Chi et al. reported that high pressure up to 81 GPa induced 

sufficient strain forces into MoS2 sheets, and thus leading to 1T phase 

by mechanical layer sliding[43]. However, this compressive pressure is 

extremely high and the process is very low throughput, which is hard 

to realize. In order to induce phase transition of 2H into 1T, electron 

injection, argon-plasma treatment, and chemical vapor treatment have 

successfully developed. More recently, our group reported scalable and 

straightforward process for exfoliating MoS2 materials using fluid dy-

namins into metallic MoS2 sheets, resulting in an impressive yield per-

formance of 76.9% and a high concentration of 20 mg/mL[35]. In this 

process, ionic liquid was used as additives for stabilizing MoS2 dis-

persion and 1T phase.

3.2. Bottom-up approaches for preparation of MoS2

Hydrothermal and solvothermal reactions are common for preparing 

MoS2 nanosheets[44-46]. A mixture of ammonium molybdate tetrahy-

drate ((NH4)6Mo7O24⋅4H2O) and thiourea was used as the precursors 

for the Mo and S elements. The precursors were thermally treated at 

200 ℃ for 20 h. The typically obtained MoS2 sheets have a lateral size 

of 200 nm with 2~5 layers. In addition, 1T phase of MoS2 was also 

obtained with 1T contents of < 70%. In order to increase 1T contents, 

the temperature-assisted phase transform of MoS2 has been developed. 

The hydrothermal treatment at 180 ℃ for 24 h induced metallic phase 

up to 92.4%. The high temperature above 200 ℃ caused to the for-

mation of dominant 2H phase (> 90%). The composition ratio of pre-

cursors is also critical factor for control the phase of MoS2. Liu et al. 
reported that changing the precursor ratio significantly influenced met-

allic contents of MoS2[45].

4. Applications of MoS2

Since the 2H MoS2 was synthesized for many applications, the 1T 

MoS2 has also synthesized and now been widely used in various appli-

cation fields, such as, electrocatalysts (Figure 3), electronic devices, 

photovoltaic, sensors, and energy storage and conversion systems[27,34].

4.1. Supercapacitor

Supercapacitors, also called ultracapacitors or electrochemical 

capacitors, are power supply devices to bridge the gap between batteries 

and capacitors[1-10]. By separating electrolyte ions, supercapacitors 

can store electrical charges and provides high power density. The 

desirable supercapacitors can operate at high charge and discharge rates 

within a few seconds during long-term. Recent issue of supercapacitors 

is how to increase energy densities, which is generally low than lith- 

ium-ion batteries. Since the discovery of graphene materials, ultra

Figure 1. Schematic illustration of exfoliation of MoS2 using alkali metals as intercalants and post-treatments of sonication and ball milling methods.
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Figure 3. (a) Cyclic voltammograms of various solutions. (b)~(e) 
Schematic illustrations for the evolution process of the 1T phase based
on Mo (Reprinted with permission form ref. 46. Copyright (2017) 
American Chemical Society).

thin-layered 2D materials are promising electrode materials to achieve 

a high capacitance, resulting in high energy density of supercapacitors 

[5]. Various 2D materials, including MXenes, metal oxides, metal hy-

droxides, and disulfide family, have been extensively attempted to en-

hance electrochemical performances of supercapacitors[5]. Among them, 

MoS2 has been attracted a great deal of attention for development of 

supercapacitors because of its high theoretical capacitance value and 

unique structural properties of MoS2. The porous MoS2 thin films were 

prepared by Choudhary and coworkers based on a direct magnetron 

sputtering method[47]. The MoS2 film electrode showed a high gravi-

metric capacitance of 330 F/g at 10 V/s (high rate capability) and a 

good cycling stability of 97% retention over 5,000 cycles of charg-

ing/discharging measurement. Karade et al. synthesized ultrathin and 

layer MoS2 nanosheets by a chemical deposition method, and demon-

strated as energy storage electrodes by a high specific capacitance of 

576 F/g at 5 mV/s and an excellent cycle life (82% retention over 

3000 cycles)[48]. However, 2H MoS2 electrodes limited to practical su-

percapacitor electrodes because of their poor electrical conductivity. In 

contrast, the metallic MoS2 electrodes provide more advantages of high 

electrical conductivity, a high hydrophilicity, and a large interlayer 

space. Acerce and coworkers successfully fabricated 1T MoS2 film 

electrodes by a chemical intercalation-exfoliation and post vacuum fil-

tration methods[49]. The 1T MoS2 film electrode had a thickness of 

5 µm and film packing density of 2.5 mg/cm2, in which 1T content 

is approximately 70%. The 1T MoS2 film electrode showed an ex-

tremely high volumetric capacitance of 400~650 F/cm3 at a scan rate 

of 20 mV/s. In addition, this MoS2 film electrode had high specific ca-

pacitance at high scan rate of 200 mV/s. Hence, high energy and pow-

er densities were achieved to 0.11 Wh/cm3 and 1.1 W/cm3, respectively. 

Other researchers have focused on synthesis of 1T MoS2 materials and 

applied them into supercapacitor electrodes. Thi et al. reported that 

synthesized 1T MoS2 nanoflower-based electrodes show a high specific 

capacitance of 259 F/g at 5 mV/s with a good long-term stability dur-

ing 1,000 cycles[50]. On the other hand, MoS2/carbon composite elec-

trodes have been developed in order to address intrinsically low elec-

trical conductivity of MoS2. Various nanocarbon materials have been 

employed, including carbon nanofibers, graphene, carbon nanotubes, 

carbon spheres, and conducting polymers. Huang and coworkers syn-

thesized composite electrodes consisted of carbon aerogel/MoS2, show-

ing 260 F/g at 1 A/g with a good cycle life of 924% capacitance re-

tention over 1,500 cycles[51]. The MoS2/graphene-incorporated into 

multiwalled carbon nanotube electrodes have been also prepared, show-

ing a high specific capacitance, a high rate capability, and a good 

long-term stability. To increase ion and electron transport properties in 

electrode materials, three-dimensional (3D) MoS2/graphene aerogel 

composites were synthesized by a self-assembly of graphene oxide un-

der hydrothermal treatment. As-synthesized 3D MoS2/graphene electro-

des showed a high capacitance of 231 F/g with high energy (26 Wh/kg) 

and power (6,443 W/kg) densities[52]. Zhang and coworkers fabricated 

a rambutan-like composite electrode of MoS2-incorporated into carbon 

spheres[53]. This composite electrode exhibited a high specific capaci-

tance of 411 F/g at an applied current density of 1 A/g and a good 

long-term stability of 93.2% capacitance retention during 1,000 cycles. 

The conducting polymers have been also attempted to enhance the 

electrical conductivity of MoS2. For instance, poly(3,4-ethylenedioxy- 

thiophene) was in situ polymerized onto the MoS2 surface. The coated 

conducting polymer enhanced the electrochemical performance of com-

posite electrodes, showing a high specific capacitance of 405 F/g and 

an excellent capacitance retention of 90% over 1,000 cycles[54]. Yang 

et al. synthesized core-shell structured electrode consisted of polyani-

line shell and 1T MoS2 core. This unique structured electrode exhibited 

an impressive specific capacitance of 678 F/g at 1 mV/s with a good 

capacitance retention of 80% during 10,000 cycles[55]. The polypyrrole 

was polymerized onto the MoS2 surface, showing a high specific ca-

pacitance of 700 F/g at a scan rate of 10 mV/s and a good cycling 

stability of 85% capacitance retention during 4,000 cycles[56]. The 

controlled morphology of conducting polymer/MoS2 composite electro-

des showed enhanced electrochemical performances for supercapacitor 

applications. The Mn3O4 was incorporated into MoS2 using a hydro-

thermal and chemical precipitation method. This hybrid electrode 

showed a high specific capacitance of 119.3 F/g after 2,000 cycles at 

an applied current density of 1 A/g with a capacitance retention of 

69.3%[57]. The ultrathin layered 2D hybrid films of graphene/MoS2 

was fabricated by vacuum filtration method, showing an extremely 

high volumetric capacitance of 1,292.0 F/cm3 at 1 A/g and an excellent 

cycle life[58].

4.2. Rechargeable batteries

Increasing energy demands in modern society has required the de-

velopment of the high energy and power density of energy devices. 

Lithium-ion batteries have offered high energy densities for commer-

cially available electronic products, such as, personal mobile phones, 

notebooks, portable electronics, and electric or hybrid vehicles[59]. 

They can store electrical charges by the electrochemical reactions be-

tween anode and cathode materials. Graphite is one of the most prom-

ising anode materials in commercial Li-ion batteries. However, the in-

trinsically low theoretical capacity of graphite (372 mAh/g) limited to 

application of Li-ion batteries. In this regard, MoS2 has been attracted 
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much attention as anode materials for development of lithium ion bat-

teries because of its high theoretical capacity of 670 mAh/g, low cost, 

and natural abundance. The 2D layer structure of MoS2 allows accu-

mulating Li+, Na+, and Mg2+ ions. Despite of these attractive features 

of MoS2 in battery applications, MoS2-based electrodes suffered from 

poor stability and low rate capability originated from formation of Li2S 

after the first cycle[60]. Thus, recent researches focused on high rate 

capability and long-term stability of MoS2-based electrodes for lithium 

ion batteries.

Various morphologies and structures of MoS2 materials have been 

fabricated. For instance, Xu et al. reported that 3D microspheres of 

MoS2 nanoflakes through a solid phase reaction method show a high 

discharge capacity of 850.9 mAh/g at 100 mA/g over 50 cycles[61]. 

The 2D MoS2 nanosheet electrodes synthesized by Veeramalai and 

coworkers showed 1,097 mAh/g at 50 mA/g after 25 cycles[62]. In ad-

dition, 3D hierarchical structured MoS2 with porous structure prepared 

by Wang et al. exhibited a discharge capacity of 845 mAh/g at 100 

mA/g after 50 cycles with a good stability even at a high rate of 500 

mA/g over 100 cycles[63]. The MoS2-based electrodes suffered from 

low electrical conductivity. Hence, 1T MoS2 has been intensively in-

vestigated because of its high electrical conductivity and expanded in-

terlayer space. The pristine 2H MoS2 typically exhibited 600 mAh/g at 

the first cycle and decreased dramatically to ~200 mAh/g in the sec-

ond cycle. In contrast, 1T MoS2 delivered as high as specific capacity 

of 1,000 mA/g and maintained 50% retention after 50 cycles. In order 

to address the issues of MoS2-based electrodes, carbon materials have 

incorporated into electrode materials[34]. The graphene/MoS2 compo-

sites with 2H and 1T hybrid phase through a hydrothermal synthesis 

showed a high discharge capacity of 1,086 mAh/h at 500 mA/g and 

a high capacity retention of 82.6% (897 mAh/g) after 50 cycles[64]. 

The sandwich-structured MoS2/graphene composite electrodes exhibited 

an extremely high specific capacity of 1,800 mA even at a high rate 

of 1 A/g. The controlled solvothermal method enabled to deposition of 

MoS2 nanosheets onto the carbon cloth surface, showing 1,789 mAh/g 

at 0.1 A/g and 853 mAh/g after 140 cycles[65]. In addition, nitro-

gen-doped MoS2 deposited onto carbon cloth delivered a high dis-

charge capacity of 1,308 mAh/g at 0.1 A/g and 1,125 mAh/g after 100 

cycles[66]. The MoS2 was incorporated into metal oxides, such as, 

TiO2. Chen et al. reported that 3D porous MoS2/TiO2 nanocomposite 

electrodes showed an excellent cycling performance of 95.9% retention 

after 100 cycles[67].

Apart from lithium ion batteries, MoS2 was used as an electrode ma-

terial for application of lithium-sulfur batteries. Compared to lithium ion 

batteries, Li-S batteries provide higher energy density (2,800 Wh/kg) 

and higher theoretical capacity of 1,675 mAh/g. However, Li-S bat-

teries suffered from the intrinsically low electrical conductivity of sul-

fur, the formation of polysulfides, and significant volume expansion. 

To address these issues, Wang et al. described that hierarchical and po-

rous structured SnO2/1T MoS2 nanosheets deposited onto the carbon 

cloth surface showed 448 mAh/g after 4,000 cycles[68]. Jeong and 

coworkers fabricated 1T MoS2 and carbon nanotube composite elec-

trode, showing 670 mAh/g after 500 cycles at a high rate of 1C[69]. 

The availability of MoS2 sheets with the intercalation of alkali metal 

ions allowed them to accumulate sodium ions among the MoS2 sheets, 

resulting in fabrication of Na-ion batteries. The graphene/MoS2 compo-

site electrodes exhibited a high rate capability of 284 mAh/g at a high 

rate of 20 A/g with an excellent cycle life of 95% retention after 250 

cycles[70]. In addition, expanding MoS2 sheets with polyethylene oxide 

led to a high specific capacity of 225 mAh/g and maintained 148 

mAh/g after 70 cycles[71]. Because the magnesium can accumulate 

charges two times higher than those of sodium and lithium metal, mag-

nesium ion batteries have been attracted a great deal of attention as po-

tential rechargeable energy storage devices. Liang and coworkers re-

ported that MoS2/polyethylene oxide composite electrodes exhibited a 

specific capacity of 75 mAh/g at 5 mA/g[72]. In addition, Liu et al. 
fabricated graphene/MoS2 composite electrode, showing a high dis-

charge capacity of 115.9 mAh/g and a good cycle life of 82.5 mAh/g 

after 50 cycles[73].

5. Conclusions

We summarized the properties, preparation methods, and energy 

storage applications of MoS2 materials. Particularly, the properties of 

MoS2 depend on morphologies and phase. Thus, various synthetic 

methods of MoS2 were introduced involving top-down and bottom-up 

approaches. Supercapactors and rechargeable batteries (i.e., lithium-ion, 

magnesium-ion, and sodium-ion batteries) using MoS2 electrode mate-

rials were described. The metallic MoS2 nanosheets have showed a 

promising potential in energy storage applications, because of their 

high electrical conductivity, hydrophilicity, high active surface area, 

and expanded interlayer distance. Although MoS2 materials has been 

employed as advanced electrode materials in energy storage field, there 

still are many challenges in terms of mass production, fine control of 

phase and morphology, and unit cost production.
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