• Title/Summary/Keyword: molecular weight control

Search Result 537, Processing Time 0.031 seconds

SUBMICRON TECHNOLOGY OF SINGLE LAYER PHOTO-RESIT (단층RESIST의 미세패턴형성기술)

  • Bae, Kyung-Sung;Hong, Seung-Kag
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.315-318
    • /
    • 1988
  • THE STUDY ABOUT CHARACTERISTICS OF PHOTO RESIST ITSELF (MINIMUM RESOLUTION, DEPTH OF FOCUS MARGIN AND CRITICAL DIMENSION CONTROL LATITUDE) WAS DONE AND REPORTED. THREE TYPES OF PHOTO RESISTS WERE TESTED. THE FIRST IS THE LOW MOLECULAR WEIGHT PHOTO-RESIST SHOWING THE NARROW DISTRIBUTION OF MOLECULAR WEIGHT (LOW MOLECULAR WEIGHT CONTROL TYPE), THE SECOND IS A PHOTO-RESIST CONTAINING THE INNER CONTRAST ENCHANCEMENT MATERIAL (INNER CEM TYPE) AND THE THIRD IS A NORMAL PHOTO-RESIST (HIGH MOLECULAR WEIGHT TYPE). THE INNER CEM TYPE AND THE LOW MOLECULAR WEIGHT CONTROL TYPE PHOTO-RESIST ARE MORE IMPROVED PHOTO-RESISTS. IT PROVED THAT THE MINIMUM RESOLUTION WAS IMPROVED BY 0.2 - 0.3 um, THE DEPTH OF FOCUS MARGIN WAS IMPROVED BY 0.8 - 1.2 um AND THE C.D. CONTROL LATITUIDE WAS IMPROVED.

  • PDF

Molecular Weight Distribution of Pullulan and Degrading Enzyme Activity of Aureobasidium pullulans

  • Lee, Ji-Hyeon;Kim, Mi-Ryeong;Kim, Jeong-Hwa;Lee, Jin-U;Kim, Seong-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.325-328
    • /
    • 2000
  • The effects of DO and pH on the mass production of pullulan with high-molecular weight from A. pullulans ATCC 42023 were evaluated. The maximum pullulan production yield (51%) was obtained at pH non control (initial pH 6.5) and DO control (above 50%) condition. The pullulan degrading enzyme was activated when the pH of broth reached lower than 5.0 and portion of low molecular weight pullulan was increased. The formation of a black pigment was observed at the initial stationary phase, 40hr of fermentation. Therefore, the fermentation should be carried out in pH non control and DO control condition and harvested before reaching stationary phase around 40h for the production of high molecular weight pullulan.

  • PDF

Control of Molecular Weight and Terminal Groups of Poly(3-hydroxybutyrate) in Bio-synthesis (미생물 합성에 의한 poly(3-hydroxybutyrate)의 분자량과 말단관능기 제어)

  • Lee, Chan Woo
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.130-140
    • /
    • 2018
  • In the bio-synthesis of poly(3-hydroxybutyrate)(PHB), which is a kind of poly(3-hydroxyalkanoate)(PHA), aimed to control the low molecular weight of PHB and obtain a telechelic PHB. As a result of incubation of R. eutropha at $30^{\circ}C$ with ethylene glycol added as a chain transfer agent, PHB content on the dry cell weight increased up to 24h, however, it decreased after that, and the molecular weight of PHB increased from 9h to 12h, and then, decreased up to 72h. The decrease of the content and the molecular weight of PHB indicates that PHB was decomposed as an energy source in bacterial cells and was incorporated into metabolic pathways. $^1H-NMR$ of the obtained PHB after incubation for 72h was measured to determine the terminal groups of the PHB during incubation. As the results of $^1H-NMR$ measurement, the peaks derived from ethylene glycol in both terminals of PHB were observed. Which indicate that the terminal reaction was caused by the addition of ethylene glycol, and that telechelic PHB having hydroxyl group at the both terminals where molecular weight was controlled was successfully synthesized.

Modulation of Poly($\beta-amino ester$) pH-Sensitive Polymers by Molecular Weight Control

  • Kim Min Sang;Lee Doo Sung;Choi Eun-Kyung;Park Heon-Joo;Kim Jin-Seok
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.147-151
    • /
    • 2005
  • The main objective of this study was to modulate pH-sensitive polymers (poly($\beta-amino esters$)) by controlling their molecular weight during their synthesis. These pH-sensitive and biodegradable polymers were synthesized by Michael-type step polymerization. 1,4-Butane diol diacrylate was used as the unsaturated carbonyl compound and piperazine as the nucleophilic compound. Various molecular weight polymers were obtained by varying the mol ratio of piperazine/1,4-butane diol diacrylate. The synthesized polymers were characterized by $^{1}H-NMR$ and their molecular weights were measured by gel permeation chromatography(GPC). The dependence of the molecular weight on the mol ratio was evaluated by the titration method. Also, the pH dependent turbidity of the polymers was determined by UV-Vis spectrophotometry. This pH dependent property of the polymers could be very useful for preparing drug carriers that are sensitive to pH.

Effect of Solubilization Conditions on Molecular Weight Distribution of Enzymatically-Hydrolyzed Silk Peptides (실크의 가용화 조건이 효소분해 실크 펩타이드의 분자량 분포에 미치는 영향)

  • 채희정;인만진;김의용
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.114-118
    • /
    • 1998
  • The effects of fibron solubilization conditions on molecular weight distribution of enzymatically-hydrolyzed silk peptides were investigated. The weight-averaged molecular weights of silk proteins prepared by solubilization with calcium chloride, ethylenediamine and sulfuric acid were 41600, 3308, and 1268 dalton, respectively. Silk peptides in the average molecular weight range of 600-1200 dalton were obtained by protease treatment from solubilized silk fibroin. After the acid hydrolysis of silk protein using hydrochloric acid for 24 hr, silk protein was hydrolyzed to peptides whose average molecular weight and free amino acid content were 145 dalton and 80%, respectively. It was possible to control molecular weight distribution of silk peptides by the combination of solubilization and hydrolysis methods. Among the various treatment methods, acid solubilization followed by protease treatment had an advantage of molecular weight control for the peptide production.

  • PDF

Synergistic Effects of Carboxymethylchitosan Fabric and Low Molecular Weight Heparin in Reducing Adhesion Formation in the Rat Uterine Horn Model (Rat에서 Carboxymethylchitosan Fabric과 Low Molecular Weight Heparin의 자궁각 유착 형성 방지 상승효과)

  • Kwon, Young-Sam;Jang, Kwang-Ho
    • Journal of Veterinary Clinics
    • /
    • v.25 no.4
    • /
    • pp.263-267
    • /
    • 2008
  • This study was performed to compare the efficacy of carboxymethylchitosan fabric (CMCF) with that of the combination of CMCF and low molecular weight heparin (LMWH) for the prevention of postoperative uterine adhesion in rats. Adhesions were induced by suturing both the uterine serosa and peritoneum abrased until petechial bleeding occurred. Fourteen days later, adhesions were evaluated clinically and histopathologically. The mean tensile strength was significantly decreased in the CMCF and CMCF+LMWH groups compared to that of control group, and the CMCF+LMWH group had the lowest tensile strength. The distance of adhesion site was highest in the CMCF group and slightly decreased in the CMCF+LMWH group comparing to that of control group. The inflammatory cell infiltration and neovascularization of the CMCF group were significantly lower than those of the control group. It was observed that the damage at intestinal serosa was significantly decreased in the CMCF+LMWH group comparing to that of control group. Therefore, it was concluded that CMCF and LMWH may be useful to prevent postoperative uterine adhesion in rats.

Strategy for molecular weight distribution control in a batch polymerization reactor system (회분식 중합 반응기에서의 분자량 분포제어 전략)

  • 김인선;유기윤;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.766-771
    • /
    • 1993
  • A mathematical model is developed to represent the batch reactor for free radical polymerization of PMMA The model is validated by comparing the simulation result with the experimental data. A computational scheme is proposed to determine the trajectory of the reactor temperature that will produce polymer product having the desired molecular weight distribution. For this instantaneous number average chain length and polydispersity are introduced to calculate the reactor temperature. The former is assumed to be a second order polynomial of the sum of the living and dead polymer concentrations. Various reactor temperature, trajectories are observed depending on the reactor conditions and prescribed molecular weight distributions. Fuzzy and PID control algorithms are applied to trace the reactor temperature trajectory. While the PID control gives rise to an overshoot when the trajectory changes its direction, the fuzzy controller yields a more satisfactory performance because it secures information on the trajectory pattern.

  • PDF

pH와 용존산소량이 Aureobasidium pullulans에 의한 pullulan의 생산성과 분자량에 미치는 영향에 대한 연구

  • Lee, Ji-Hyeon;Kim, Jeong-Hwa;Kim, Mi-Ryeong;Lee, Jin-U;Kim, Seong-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.283-286
    • /
    • 2000
  • The effects of dissolved oxygen and pH on the cell growth and mass production of high-molecular weight pullulan by A. pullulans ATCC 42023 were evaluated. For the production of commercially useful pullulan with high-molecular weight, the influence of pH control on the pullulan production and growth of A. pullulans was studied in batch fermentation. It was found that the productivity of high-molecular weight pullulan with pH control at 6.5 was higher than that with no pH control. The influence of dissolved oxygen on the pullulan production and growth was studied. It was found that pullulan yield and synthesis rate increased with oxygen availability.

  • PDF

High Performance Phenoxytitanium-Based Catalysts for Olefin Polymerization

  • Miyatake, Tatsuya
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.159-160
    • /
    • 2006
  • We developed novel catalyst, PHENICS composed of the combination of a cyclopentadienyl group to perform a high catalytic activity and a bulky phenoxy group, which performs the production of high molecular weight polyolefin. The polymerization activity of PHENICS at high temperature is higher than well-known CGC catalyst. PHENICS showed the excellent ability of comonomer incorporation into polymer chain. The obtained copolymer had a high molecular weight. The PHENICS catalyst is also active to the copolymerization of ethylene and several vinyl comonomers such as styrene, norbornen, and conjugated dienes. We will discuss new cocatalysts for PHENICS to improve activity and the ability of molecular weight control.

  • PDF

Effect of Dissolved Oxygen Concentration and pH on the Mass Production of High Molecular Weight Pullulan by Aureobasidium pullulans

  • LEE, JI-HYUN;JEONG-HWA KIM;MI-RYUNG KIM;SUNG-MI LIM;SOO-WAN NAM;JIN-WOO LEE;SUNG-KOO KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • The effects of DO and pH on the mass production of pullulan with high molecular weight and the morphology of A. pullulans ATCC 42023 were evaluated. A. pullulans showed a maximum production of pullulan (11.98 g/l) when the initial pH of the culture broth was 6.5 in a shake-flask culture. In a batch culture, the mixture of a yeast-like and mycelial cell forms was found at a pH of 4.5, and the maximum production of pullulan (13.31 g/l) was obtained. However, a high proportion of high molecular weight pullulan (M.W.>2,000,000) was produced at a pH of 6.5, with a yeast-like morphology. The maximum pullulan production yield ($51\%$) was obtained at a pH noncontrol (initial pH 6.5) and DO control (above $50\%$) condition. Pullulan degrading enzyme was activated when the pH of the broth was lower than 5.0 and the portion of low molecular weight pullulan was increased. The formation of a black pigment was observed at an initial stationary phase, at 40 h of fermentation. Therefore, the fermentation should be carried out in a pH noncontrol (initial pH of 6.5) and DO control (above $50\%$) condition, and should be harvested before reaching the stationary phase (around 40 h) for the production of high molecular weight pullulan.