• Title/Summary/Keyword: molecular phenotype

검색결과 361건 처리시간 0.028초

Analysis of Genetic Variation in Botrytis cinerea Isolates Using Random Amplified Polymorphic DNA Markers

  • Choi, In-Sil;Kim, Dae-Hyuk;Lee, Chang-Won;Kim, Jae-Won;Chung, Young-Ryun
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권5호
    • /
    • pp.490-496
    • /
    • 1998
  • Random amplified polymorphic DNA (RAPD) markers were used to survey genetic variability among 34 Botrytis cinerea isolates from nine different host plants in Korea. For RAPD analysis, 115 arbitrary decamer primers were initially screened for polymorphic major DNA bands with 11 representative B. cinerea isolates. Eleven primers that initially detected polymorphisms were tested a second time with additional 23 isolates of B. cinerea as well as one isolate of Botrytis squamosa as an outgroup. The RAPD analyses revealed that all isolates except one showed different molecular phenotypes. Dendrograms obtained from dissimilarity matrices using the unweighted paired group method of arithmetic means (UPGMA) showed the 36.4% to 90.0% similarity among all B. cinerea isolates. The B. squamosa isolate showed the least similarity to all B. cinerea isolates. The cluster analyses indicated no correlation among all the characteristics examined including molecular phenotypes, host and geographic origins, year of isolation, or pathogenicity. The RAPD data suggest that a high level of genetic variation exists among Korean populations of B. cinerea and it seems to be caused by heterokaryosis among preexisting molecular phenotypes.

  • PDF

Probiotics용 유산균의 Design과 Molecular Typing에 의한 동정법 (Design of Lactic Acid Bacteria Aiming at Probiotic Culture and Molecular Typing for Phyogenetic Identification)

  • 윤성식
    • Journal of Dairy Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.47-60
    • /
    • 2000
  • Over decades of work, the probiotic research has grown rapidly with a number of new cultures, which is claimed a variety of benefit. However, many of the specific effects attributed to the ingestion of probiotics remain convoluted and scientifically unsubstantiated. Accordingly, the scientific community faces a greater challenge and must objectively seek cause and effect relationships for many potential and currently investigated probiotic species. Rational selection and design of probiotics remains an important challenge and will require a solid information about the physiology and genetics of candidate strains relevant to their intestinal roles, functional activities, and interaction of with other resident micro flora. As far as beneficial culture of lactic acid bacteria (LAB) is concerned, simple, cost-effective, and exact identification of candidate strains is of foremost importance among others. Until recently, the relatedness of bacterial isolates has been determined sorely by testing for one or several phenotyphic markers, using methods such as serotyping, phage-typing, biotyping, and so forth. However, there are problems in the use of many of these phenotype-based methods. In contrast, some of newer molecular typing methods involving the analysis of DNA offer many advantages over traditional techniques. These DNA-based methods have the greater discriminatory power than that of phenotypic procedures. This review focuses on the importance and the basis of molecular typing methods along with some considerations on de-sign and selection of probiotic culture for human consumption.

  • PDF

Juxtacrine regulation of cellular senescence

  • Narita, Masashi
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.3-4
    • /
    • 2019
  • Cellular senescence is defined as a state of stable cell cycle exit in response to various stimuli, which include both cytotoxic stress and physiological cues. In addition to the core non-proliferative aspect, senescence is associated with diverse functionalities, which contribute to the role of senescence in a wide range of pathological and physiological processes. Such functionality is often mediated by the capability of senescent cells to communicate with their surroundings. Emerging evidence suggests that senescence is not a single entity, but a dynamic and heterogeneous collective phenotype. Understanding the diverse nature of senescence should provide insights into the complexity of tissue homeostasis and its disruption, such as in aging and tumorigenesis.

Putative fructose-1,6-bisphosphate aldolase 1 (AtFBA1) affects stress tolerance in yeast and Arabidopsis

  • Moon, Seok-Jun;Shin, Dong-Jin;Kim, Beom-Gi;Byun, Myung-Ok
    • Journal of Plant Biotechnology
    • /
    • 제39권2호
    • /
    • pp.106-113
    • /
    • 2012
  • Glycolysis is responsible for the conversion of glucose into pyruvate and for supplying reducing power and several metabolites. Fructose-1,6-bisphosphate aldolase (AtFBA1), a central enzyme in the glycolysis pathway, was isolated by functional complementation of the salt-sensitive phenotype of a calcineurin (CaN)-deficient yeast mutant. Under high salinity conditions, aldolase activity and the concentration of NADH were compromised. However, expression of AtFBA1 maintained aldolase activity and the NADH level in yeast cells. AtFBA1 shares a high degree of sequence identity with known class I type aldolases, and its expression was negatively regulated by stress conditions including NaCl. The fusion protein GFP-AtFBA1 was localized in the cytosol of Arabidopsis protoplasts. The seed germination and root elongation of AtFBA1 knock-out plants exhibited sensitivity to ABA and salt stress. These results indicate that AtFBA1 expression and aldolase activity is important for stress tolerance in yeast and plants.

Molecular genetic decoding of malformations of cortical development

  • Lim, Jae Seok;Lee, Jeong Ho
    • Journal of Genetic Medicine
    • /
    • 제12권1호
    • /
    • pp.12-18
    • /
    • 2015
  • Malformations of cortical development (MCD) cover a broad spectrum of developmental disorders which cause the various clinical manifestations including epilepsy, developmental delay, and intellectual disability. MCD have been clinically classified based on the disruption of developmental processes such as proliferation, migration, and organization. Molecular genetic studies of MCD have improved our understanding of these disorders at a molecular level beyond the clinical classification. These recent advances are resulted from the development of massive parallel sequencing technology, also known as next-generation sequencing (NGS), which has allowed researchers to uncover novel molecular genetic pathways associated with inherited or de novo mutations. Although an increasing number of disease-related genes or genetic variations have been identified, genotype-phenotype correlation is hampered when the biological or pathological functions of identified genetic variations are not fully understood. To elucidate the causality of genetic variations, in vivo disease models that reflect these variations are required. In the current review, we review the use of NGS technology to identify genes involved in MCD, and discuss how the functions of these identified genes can be validated through in vivo disease modeling.

Differences Regarding the Molecular Features and Gut Microbiota Between Right and Left Colon Cancer

  • Kim, Kwangmin;Castro, Ernes John T.;Shim, Hongjin;Advincula, John Vincent G.;Kim, Young-Wan
    • Annals of Coloproctology
    • /
    • 제34권6호
    • /
    • pp.280-285
    • /
    • 2018
  • For many years, developmental and physiological differences have been known to exist between anatomic segments of the colorectum. Because of different outcomes, prognoses, and clinical responses to chemotherapy, the distinction between right colon cancer (RCC) and left colon cancer (LCC) has gained attention. Furthermore, variations in the molecular features and gut microbiota between right and LCCs have recently been a hot research topic. CpG island methylator phenotype-high, microsatellite instability-high colorectal cancers are more likely to occur on the right side whereas tumors with chromosomal instability have been detected in approximately 75% of LCC patients and 30% of RCC patients. The mutation rates of oncogenes and tumor suppressor genes also differ between RCC and LCC patients. Biofilm is more abundant in RCC patients than LLC patients, as are Prevotella, Selenomonas, and Peptostreptococcus. Conversely, Fusobacterium, Escherichia/Shigella, and Leptotrichia are more abundant in LCC patients compared to RCC patients. Distinctive characteristics are apparent in terms of molecular features and gut microbiota between right and LCC. However, how or to what extent these differences influence diverging oncologic outcomes remains unclear. Further clinical and translational studies are needed to elucidate the causative relationship between primary tumor location and prognosis.

Far Beyond Cancer Immunotherapy: Reversion of Multi-Malignant Phenotypes of Immunotherapeutic-Resistant Cancer by Targeting the NANOG Signaling Axis

  • Se Jin Oh;Jaeyoon Lee;Yukang Kim;Kwon-Ho Song;Eunho Cho;Minsung Kim;Heejae Jung;Tae Woo Kim
    • IMMUNE NETWORK
    • /
    • 제20권1호
    • /
    • pp.7.1-7.11
    • /
    • 2020
  • Cancer immunotherapy, in the form of vaccination, adoptive cellular transfer, or immune checkpoint inhibitors, has emerged as a promising practice within the field of oncology. However, despite the developing field's potential to revolutionize cancer treatment, the presence of immunotherapeutic-resistant tumor cells in many patients present a challenge and limitation to these immunotherapies. These cells not only indicate immunotherapeutic resistance, but also show multi-modal resistance to conventional therapies, abnormal metabolism, stemness, and metastasis. How can immunotherapeutic-resistant tumor cells render multi-malignant phenotypes? We reasoned that the immune-refractory phenotype could be associated with multi-malignant phenotypes and that these phenotypes are linked together by a factor that acts as the master regulator. In this review, we discussed the role of the embryonic transcription factor NANOG as a crucial master regulator we named "common factor" in multi-malignant phenotypes and presented strategies to overcome multi-malignancy in immunotherapeutic-resistant cancer by restraining the NANOG-mediated multi-malignant signaling axis. Strategies that blunt the NANOG axis could improve the clinical management of therapy-refractory cancer.

Genotype and Phenotype of Echinococcus granulosus Derived from Wild Sheep (Ovis orientalis) in Iran

  • Eslami, Ali;Meshgi, Behnam;Jalousian, Fatemeh;Rahmani, Shima;Salari, Mohammad Ali
    • Parasites, Hosts and Diseases
    • /
    • 제54권1호
    • /
    • pp.55-60
    • /
    • 2016
  • The aim of the present study is to determine the characteristics of genotype and phenotype of Echinococcus granulosus derived from wild sheep and to compare them with the strains of E. granulosus sensu stricto (sheep-dog) and E. granulosus camel strain (camel-dog) in Iran. In Khojir National Park, near Tehran, Iran, a fertile hydatid cyst was recently found in the liver of a dead wild sheep (Ovis orientalis). The number of protoscolices (n=6,000) proved enough for an experimental infection in a dog. The characteristics of large and small hooks of metacestode were statistically determined as the sensu stricto strain but not the camel strain (P=0.5). To determine E. granulosus genotype, 20 adult worms of this type were collected from the infected dog. The second internal transcribed spacer (ITS2) of the nuclear ribosomal DNA (rDNA) and cytochrome c oxidase 1 subunit (COX1) of the mitochondrial DNA were amplified from individual adult worm by PCR. Subsequently, the PCR product was sequenced by Sanger method. The lengths of ITS2 and COX1 sequences were 378 and 857 bp, respectively, for all the sequenced samples. The amplified DNA sequences from both ribosomal and mitochondrial genes were highly similar (99% and 98%, respectively) to that of the ovine strain in the GenBank database. The results of the present study indicate that the morpho-molecular features and characteristics of E. granulosus in the Iranian wild sheep are the same as those of the sheep-dog E. granulosus sensu stricto strain.

Multiple Signaling Pathways Contribute to the Thrombin-induced Secretory Phenotype in Vascular Smooth Muscle Cells

  • Jeong, Ji Young;Son, Younghae;Kim, Bo-Young;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.549-555
    • /
    • 2015
  • We attempted to investigate molecular mechanisms underlying phenotypic change of vascular smooth muscle cells (VSMCs) by determining signaling molecules involved in chemokine production. Treatment of human aortic smooth muscle cells (HAoSMCs) with thrombin resulted not only in elevated transcription of the (C-C motif) ligand 11 (CCL11) gene but also in enhanced secretion of CCL11 protein. Co-treatment of HAoSMCs with GF109230X, an inhibitor of protein kinase C, or GW5074, an inhibitor of Raf-1 kinase, caused inhibition of ERK1/2 phosphorylation and significantly attenuated expression of CCL11 at transcriptional and protein levels induced by thrombin. Both Akt phosphorylation and CCL11 expression induced by thrombin were attenuated in the presence of pertussis toxin (PTX), an inhibitor of Gi protein-coupled receptor, or LY294002, a PI3K inhibitor. In addition, thrombin-induced production of CCL11 was significantly attenuated by pharmacological inhibition of Akt or MEK which phosphorylates ERK1/2. These results indicate that thrombin is likely to promote expression of CCL11 via PKC/Raf-1/ERK1/2 and PTX-sensitive protease-activated receptors /PI3K/Akt pathways in HAoSMCs. We propose that multiple signaling pathways are involved in change of VSMCs to a secretory phenotype.

Caenorhabditis elegans: A Model System for Anti-Cancer Drug Discovery and Therapeutic Target Identification

  • Kobet, Robert A.;Pan, Xiaoping;Zhang, Baohong;Pak, Stephen C.;Asch, Adam S.;Lee, Myon-Hee
    • Biomolecules & Therapeutics
    • /
    • 제22권5호
    • /
    • pp.371-383
    • /
    • 2014
  • The nematode Caenorhabditis elegans (C. elegans) offers a unique opportunity for biological and basic medical researches due to its genetic tractability and well-defined developmental lineage. It also provides an exceptional model for genetic, molecular, and cellular analysis of human disease-related genes. Recently, C. elegans has been used as an ideal model for the identification and functional analysis of drugs (or small-molecules) in vivo. In this review, we describe conserved oncogenic signaling pathways (Wnt, Notch, and Ras) and their potential roles in the development of cancer stem cells. During C. elegans germline development, these signaling pathways regulate multiple cellular processes such as germline stem cell niche specification, germline stem cell maintenance, and germ cell fate specification. Therefore, the aberrant regulations of these signaling pathways can cause either loss of germline stem cells or overproliferation of a specific cell type, resulting in sterility. This sterility phenotype allows us to identify drugs that can modulate the oncogenic signaling pathways directly or indirectly through a high-throughput screening. Current in vivo or in vitro screening methods are largely focused on the specific core signaling components. However, this phenotype-based screening will identify drugs that possibly target upstream or downstream of core signaling pathways as well as exclude toxic effects. Although phenotype-based drug screening is ideal, the identification of drug targets is a major challenge. We here introduce a new technique, called Drug Affinity Responsive Target Stability (DARTS). This innovative method is able to identify the target of the identified drug. Importantly, signaling pathways and their regulators in C. elegans are highly conserved in most vertebrates, including humans. Therefore, C. elegans will provide a great opportunity to identify therapeutic drugs and their targets, as well as to understand mechanisms underlying the formation of cancer.