DOI QR코드

DOI QR Code

Far Beyond Cancer Immunotherapy: Reversion of Multi-Malignant Phenotypes of Immunotherapeutic-Resistant Cancer by Targeting the NANOG Signaling Axis

  • Se Jin Oh (Department of Biochemistry & Molecular Biology, Korea University College of Medicine) ;
  • Jaeyoon Lee (College of Science, College of Social Sciences and Humanities, Northeastern University) ;
  • Yukang Kim (Korea University College of Medicine) ;
  • Kwon-Ho Song (Department of Biochemistry & Molecular Biology, Korea University College of Medicine) ;
  • Eunho Cho (Department of Biochemistry & Molecular Biology, Korea University College of Medicine) ;
  • Minsung Kim (Korea University College of Medicine) ;
  • Heejae Jung (Korea University College of Medicine) ;
  • Tae Woo Kim (Department of Biochemistry & Molecular Biology, Korea University College of Medicine)
  • 투고 : 2019.11.05
  • 심사 : 2020.01.02
  • 발행 : 2020.02.28

초록

Cancer immunotherapy, in the form of vaccination, adoptive cellular transfer, or immune checkpoint inhibitors, has emerged as a promising practice within the field of oncology. However, despite the developing field's potential to revolutionize cancer treatment, the presence of immunotherapeutic-resistant tumor cells in many patients present a challenge and limitation to these immunotherapies. These cells not only indicate immunotherapeutic resistance, but also show multi-modal resistance to conventional therapies, abnormal metabolism, stemness, and metastasis. How can immunotherapeutic-resistant tumor cells render multi-malignant phenotypes? We reasoned that the immune-refractory phenotype could be associated with multi-malignant phenotypes and that these phenotypes are linked together by a factor that acts as the master regulator. In this review, we discussed the role of the embryonic transcription factor NANOG as a crucial master regulator we named "common factor" in multi-malignant phenotypes and presented strategies to overcome multi-malignancy in immunotherapeutic-resistant cancer by restraining the NANOG-mediated multi-malignant signaling axis. Strategies that blunt the NANOG axis could improve the clinical management of therapy-refractory cancer.

키워드

과제정보

This work was supported by funding from the National Research Foundation of Korea (NRF-2019R1A6A3A01096338 to S.J. Oh and NRF-2017R1A2A1A17069818, NRF-2019R1A4A1029000, and NRF-2019M3A9A8066884 to T.W. Kim).

참고문헌

  1. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013;369:122-133. https://doi.org/10.1056/NEJMoa1302369
  2. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015;373:1627-1639. https://doi.org/10.1056/NEJMoa1507643
  3. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375:1856-1867. https://doi.org/10.1056/NEJMoa1602252
  4. Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 2015;125:3335-3337. https://doi.org/10.1172/JCI83871
  5. Park YM, Lee SJ, Kim YS, Lee MH, Cha GS, Jung ID, Kang TH, Han HD. Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw 2013;13:177-183. https://doi.org/10.4110/in.2013.13.5.177
  6. Kim JS, Kim YG, Park EJ, Kim B, Lee HK, Hong JT, Kim Y, Han SB. Cell-based immunotherapy for colorectal cancer with cytokine-induced killer cells. Immune Netw 2016;16:99-108. https://doi.org/10.4110/in.2016.16.2.99
  7. Son KJ, Choi KR, Lee SJ, Lee H. Immunogenic cell death induced by ginsenoside rg3: significance in dendritic cell-based anti-tumor immunotherapy. Immune Netw 2016;16:75-84. https://doi.org/10.4110/in.2016.16.1.75
  8. Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 2018;175:313-326. https://doi.org/10.1016/j.cell.2018.09.035
  9. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017;168:707-723. https://doi.org/10.1016/j.cell.2017.01.017
  10. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014;515:568-571. https://doi.org/10.1038/nature13954
  11. Cho JH. Immunotherapy for non-small-cell lung cancer: current status and future obstacles. Immune Netw 2017;17:378-391. https://doi.org/10.4110/in.2017.17.6.378
  12. Noh KH, Lee YH, Jeon JH, Kang TH, Mao CP, Wu TC, Kim TW. Cancer vaccination drives Nanog-dependent evolution of tumor cells toward an immune-resistant and stem-like phenotype. Cancer Res 2012;72:1717-1727.
  13. Noh KH, Kim BW, Song KH, Cho H, Lee YH, Kim JH, Chung JY, Kim JH, Hewitt SM, Seong SY, et al. Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J Clin Invest 2012;122:4077-4093. https://doi.org/10.1172/JCI64057
  14. Song KH, Cho H, Kim S, Lee HJ, Oh SJ, Woo SR, Hong SO, Jang HS, Noh KH, Choi CH, et al. API5 confers cancer stem cell-like properties through the FGF2-NANOG axis. Oncogenesis 2017;6:e285.
  15. Lee YH, Bae HC, Noh KH, Song KH, Ye SK, Mao CP, Lee KM, Wu TC, Kim TW. Gain of HIF-1α under normoxia in cancer mediates immune adaptation through the AKT/ERK and VEGFA axes. Clin Cancer Res 2015;21:1438-1446. https://doi.org/10.1158/1078-0432.CCR-14-1979
  16. Oh SJ, Cho H, Kim S, Noh KH, Song KH, Lee HJ, Woo SR, Kim S, Choi CH, Chung JY, et al. Targeting cyclin d-cdk4/6 sensitizes immune-refractory cancer by blocking the scp3-nanog axis. Cancer Res 2018;78:2638-2653.
  17. Song KH, Choi CH, Lee HJ, Oh SJ, Woo SR, Hong SO, Noh KH, Cho H, Chung EJ, Kim JH, et al. Hdac1 upregulation by nanog promotes multidrug resistance and a stem-like phenotype in immune edited tumor cells. Cancer Res 2017;77:5039-5053.
  18. Song KH, Kim JH, Lee YH, Bae HC, Lee HJ, Woo SR, Oh SJ, Lee KM, Yee C, Kim BW, et al. Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest 2018;128:4098-4114. https://doi.org/10.1172/JCI96804
  19. Jang HS, Woo SR, Song KH, Cho H, Chay DB, Hong SO, Lee HJ, Oh SJ, Chung JY, Kim JH, et al. API5 induces cisplatin resistance through FGFR signaling in human cancer cells. Exp Mol Med 2017;49:e374. 
  20. Woo SR, Lee HJ, Oh SJ, Kim S, Park SH, Lee J, Song KH, Kim TW. Stabilization of HDAC1 via TCL1-pAKT-CHFR axis is a key element for NANOG-mediated multi-resistance and stem-like phenotype in immune-edited tumor cells. Biochem Biophys Res Commun 2018;503:1812-1818. https://doi.org/10.1016/j.bbrc.2018.07.118
  21. Lee HJ, Noh KH, Lee YH, Song KH, Oh SJ, Kim SY, Kim TW. NANOG signaling promotes metastatic capability of immunoedited tumor cells. Clin Exp Metastasis 2015;32:429-439. https://doi.org/10.1007/s10585-015-9717-2
  22. Song KH, Kim SH, Noh KH, Bae HC, Kim JH, Lee HJ, Song J, Kang TH, Kim DW, Oh SJ, et al. Apoptosis inhibitor 5 increases metastasis via erk-mediated mmp expression. BMB Rep 2015;48:330-335. https://doi.org/10.5483/BMBRep.2015.48.6.139
  23. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011;331:1565-1570. https://doi.org/10.1126/science.1203486
  24. O'Donnell JS, Teng MW, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 2019;16:151-167. https://doi.org/10.1038/s41571-018-0142-8
  25. Schatton T, Frank MH. Antitumor immunity and cancer stem cells. Ann N Y Acad Sci 2009;1176:154-169. https://doi.org/10.1111/j.1749-6632.2009.04568.x
  26. Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clin Invest 2010;120:41-50. https://doi.org/10.1172/JCI41004
  27. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005;5:275-284. https://doi.org/10.1038/nrc1590
  28. Lytle NK, Barber AG, Reya T. Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer 2018;18:669-680. https://doi.org/10.1038/s41568-018-0056-x
  29. Wang ML, Chiou SH, Wu CW. Targeting cancer stem cells: emerging role of Nanog transcription factor. Onco Targets Ther 2013;6:1207-1220.
  30. Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G. Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J 2008;22:3696-3705. https://doi.org/10.1096/fj.08-102590
  31. Ezeh UI, Turek PJ, Reijo RA, Clark AT. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 2005;104:2255-2265. https://doi.org/10.1002/cncr.21432
  32. Hart AH, Hartley L, Parker K, Ibrahim M, Looijenga LH, Pauchnik M, Chow CW, Robb L. The pluripotency homeobox gene NANOG is expressed in human germ cell tumors. Cancer 2005;104:2092-2098. https://doi.org/10.1002/cncr.21435
  33. Hoei-Hansen CE, Almstrup K, Nielsen JE, Brask Sonne S, Graem N, Skakkebaek NE, Leffers H, Rajpert-De Meyts E. Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours. Histopathology 2005;47:48-56. https://doi.org/10.1111/j.1365-2559.2005.02182.x
  34. Lin T, Ding YQ, Li JM. Overexpression of Nanog protein is associated with poor prognosis in gastric adenocarcinoma. Med Oncol 2012;29:878-885. https://doi.org/10.1007/s12032-011-9860-9
  35. Guo Y, Liu S, Wang P, Zhao S, Wang F, Bing L, Zhang Y, Ling EA, Gao J, Hao A. Expression profile of embryonic stem cell-associated genes Oct4, Sox2 and Nanog in human gliomas. Histopathology 2011;59:763-775. https://doi.org/10.1111/j.1365-2559.2011.03993.x
  36. Wen J, Park JY, Park KH, Chung HW, Bang S, Park SW, Song SY. Oct4 and Nanog expression is associated with early stages of pancreatic carcinogenesis. Pancreas 2010;39:622-626. https://doi.org/10.1097/MPA.0b013e3181c75f5e
  37. Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, Chou SH, Chien CS, Ku HH, Lo JF. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 2008;14:4085-4095. https://doi.org/10.1158/1078-0432.CCR-07-4404
  38. Zhou X, Zhou YP, Huang GR, Gong BL, Yang B, Zhang DX, Hu P, Xu SR. Expression of the stem cell marker, Nanog, in human endometrial adenocarcinoma. Int J Gynecol Pathol 2011;30:262-270.
  39. Nagata T, Shimada Y, Sekine S, Hori R, Matsui K, Okumura T, Sawada S, Fukuoka J, Tsukada K. Prognostic significance of NANOG and KLF4 for breast cancer. Breast Cancer 2014;21:96-101. https://doi.org/10.1007/s12282-012-0357-y
  40. Lee M, Nam EJ, Kim SW, Kim S, Kim JH, Kim YT. Prognostic impact of the cancer stem cell-related marker NANOG in ovarian serous carcinoma. Int J Gynecol Cancer 2012;22:1489-1496. https://doi.org/10.1097/IGJ.0b013e3182738307
  41. Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 2010;70:10433-10444. https://doi.org/10.1158/0008-5472.CAN-10-2638
  42. Han J, Zhang F, Yu M, Zhao P, Ji W, Zhang H, Wu B, Wang Y, Niu R. RNA interference-mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells. Cancer Lett 2012;321:80-88. https://doi.org/10.1016/j.canlet.2012.02.021
  43. Choi SC, Choi JH, Park CY, Ahn CM, Hong SJ, Lim DS. Nanog regulates molecules involved in stemness and cell cycle-signaling pathway for maintenance of pluripotency of P19 embryonal carcinoma stem cells. J Cell Physiol 2012;227:3678-3692. https://doi.org/10.1002/jcp.24076
  44. Bourguignon LY, Peyrollier K, Xia W, Gilad E. Hyaluronan-cd44 interaction activates stem cell marker nanog, stat-3-mediated mdr1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 2008;283:17635-17651. https://doi.org/10.1074/jbc.M800109200
  45. Xu F, Dai C, Zhang R, Zhao Y, Peng S, Jia C. Nanog: a potential biomarker for liver metastasis of colorectal cancer. Dig Dis Sci 2012;57:2340-2346. https://doi.org/10.1007/s10620-012-2182-8
  46. Tsai LL, Yu CC, Chang YC, Yu CH, Chou MY. Markedly increased Oct4 and Nanog expression correlates with cisplatin resistance in oral squamous cell carcinoma. J Oral Pathol Med 2011;40:621-628. https://doi.org/10.1111/j.1600-0714.2011.01015.x
  47. Siu MK, Wong ES, Kong DS, Chan HY, Jiang L, Wong OG, Lam EW, Chan KK, Ngan HY, Le XF, et al. Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers. Oncogene 2013;32:3500-3509. https://doi.org/10.1038/onc.2012.363
  48. Biswas G, Anandatheerthavarada HK, Avadhani NG. Mechanism of mitochondrial stress-induced resistance to apoptosis in mitochondrial DNA-depleted C2C12 myocytes. Cell Death Differ 2005;12:266-278. https://doi.org/10.1038/sj.cdd.4401553
  49. Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 2010;9:447-464. https://doi.org/10.1038/nrd3137
  50. Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaria G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC. The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 2002;62:6674-6681.
  51. Isidoro A, Martinez M, Fernandez PL, Ortega AD, Santamaria G, Chamorro M, Reed JC, Cuezva JM. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J 2004;378:17-20. https://doi.org/10.1042/bj20031541
  52. Shin YK, Yoo BC, Chang HJ, Jeon E, Hong SH, Jung MS, Lim SJ, Park JG. Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. Cancer Res 2005;65:3162-3170. https://doi.org/10.1158/0008-5472.CAN-04-3300
  53. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 2016;41:211-218. https://doi.org/10.1016/j.tibs.2015.12.001
  54. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029-1033. https://doi.org/10.1126/science.1160809
  55. Easwaran H, Tsai HC, Baylin SB. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 2014;54:716-727. https://doi.org/10.1016/j.molcel.2014.05.015