References
- Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012;135:1348-69. https://doi.org/10.1093/brain/aws019
- Pang T, Atefy R, Sheen V. Malformations of cortical development. Neurologist 2008;14:181-91. https://doi.org/10.1097/NRL.0b013e31816606b9
- Guerrini R. Genetic malformations of the cerebral cortex and epilepsy. Epilepsia 2005;46(Suppl)1:32-7.
- Manzini MC, Walsh CA. What disorders of cortical development tell us about the cortex: one plus one does not always make two. Curr Opin Genet Dev 2011;21:333-9. https://doi.org/10.1016/j.gde.2011.01.006
- Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 2010;467:207-10. https://doi.org/10.1038/nature09327
- Hussain MS, Baig SM, Neumann S, Nurnberg G, Farooq M, Ahmad I, et al. A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am J Hum Genet 2012;90:871-8. https://doi.org/10.1016/j.ajhg.2012.03.016
- Poirier K, Lebrun N, Broix L, Tian G, Saillour Y, Boscheron C, et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet 2013;45:639-47. https://doi.org/10.1038/ng.2613
- Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 2012;44:941-5. https://doi.org/10.1038/ng.2329
- Riviere JB, Mirzaa GM, O'Roak BJ, Beddaoui M, Alcantara D, Conway RL, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 2012;44:934-40. https://doi.org/10.1038/ng.2331
- Yu TW, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi CM, et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet 2010;42:1015-20. https://doi.org/10.1038/ng.683
- Bakircioglu M, Carvalho OP, Khurshid M, Cox JJ, Tuysuz B, Barak T, et al. The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis. Am J Hum Genet 2011;88:523-35. https://doi.org/10.1016/j.ajhg.2011.03.019
- Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 2013;14:681-91. https://doi.org/10.1038/nrg3555
- Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 2014;15:121-32. https://doi.org/10.1038/nrg3642
- Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 2011;12:745-55. https://doi.org/10.1038/nrg3031
- McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297-303. https://doi.org/10.1101/gr.107524.110
- DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011;43:491-8. https://doi.org/10.1038/ng.806
- Bras J, Guerreiro R, Hardy J. Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease. Nat Rev Neurosci 2012;13:453-64.
- Barak T, Kwan KY, Louvi A, Demirbilek V, Saygi S, Tuysuz B, et al. Recessive LAMC3 mutations cause malformations of occipital cortical development. Nat Genet 2011;43:590-4. https://doi.org/10.1038/ng.836
- Murdock DR, Clark GD, Bainbridge MN, Newsham I, Wu YQ, Muzny DM, et al. Whole-exome sequencing identifies compound heterozygous mutations in WDR62 in siblings with recurrent polymicrogyria. Am J Med Genet A 2011;155A:2071-7.
- Poduri A, Evrony GD, Cai X, Elhosary PC, Beroukhim R, Lehtinen MK, et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 2012;74:41-8. https://doi.org/10.1016/j.neuron.2012.03.010
- Jamuar SS, Lam AT, Kircher M, D'Gama AM, Wang J, Barry BJ, et al. Somatic mutations in cerebral cortical malformations. N Engl J Med 2014;371:733-43. https://doi.org/10.1056/NEJMoa1314432
- Poduri A, Evrony GD, Cai X, Walsh CA. Somatic mutation, genomic variation, and neurological disease. Science 2013;341:1237758. https://doi.org/10.1126/science.1237758
- Ding L, Wendl MC, McMichael JF, Raphael BJ. Expanding the computational toolbox for mining cancer genomes. Nat Rev Genet 2014;15:556-70. https://doi.org/10.1038/nrg3767
- Kim SY, Speed TP. Comparing somatic mutation-callers: beyond Venn diagrams. BMC Bioinformatics 2013;14:189. https://doi.org/10.1186/1471-2105-14-189
- Goode DL, Hunter SM, Doyle MA, Ma T, Rowley SM, Choong D, et al. A simple consensus approach improves somatic mutation prediction accuracy. Genome Med 2013;5:90. https://doi.org/10.1186/gm494
- Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010;7:248-9. https://doi.org/10.1038/nmeth0410-248
- Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 2003;31:3812-4. https://doi.org/10.1093/nar/gkg509
- Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 2011;39:e118. https://doi.org/10.1093/nar/gkr407
- Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014;46:310-5. https://doi.org/10.1038/ng.2892
- Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987;51:503-12. https://doi.org/10.1016/0092-8674(87)90646-5
- Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ, et al. Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 2002;52:285-96. https://doi.org/10.1002/ana.10283
- Way SW, McKenna J 3rd, Mietzsch U, Reith RM, Wu HC, Gambello MJ. Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum Mol Genet 2009;18:1252-65. https://doi.org/10.1093/hmg/ddp025
- Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 1994;265:103-6. https://doi.org/10.1126/science.8016642
- Bi W, Sapir T, Shchelochkov OA, Zhang F, Withers MA, Hunter JV, et al. Increased LIS1 expression affects human and mouse brain development. Nat Genet 2009;41:168-77. https://doi.org/10.1038/ng.302
- Wolfer DP, Crusio WE, Lipp HP. Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci 2002;25:336-40. https://doi.org/10.1016/S0166-2236(02)02192-6
- Crusio WE. Flanking gene and genetic background problems in genetically manipulated mice. Biol Psychiatry 2004;56:381-5. https://doi.org/10.1016/j.biopsych.2003.12.026
- Papaioannou VE, Behringer RR. Early embryonic lethality in genetically engineered mice: diagnosis and phenotypic analysis. Vet Pathol 2012;49:64-70. https://doi.org/10.1177/0300985810395725
- Kratochwil CF, Rijli FM. The Cre/Lox system to assess the development of the mouse brain. Methods Mol Biol 2014;1082:295-313. https://doi.org/10.1007/978-1-62703-655-9_20
- LoTurco J, Manent JB, Sidiqi F. New and improved tools for in utero electroporation studies of developing cerebral cortex. Cereb Cortex 2009;19(Suppl 1):i120-5. https://doi.org/10.1093/cercor/bhp033
- dal Maschio M, Ghezzi D, Bony G, Alabastri A, Deidda G, Brondi M, et al. High-performance and site-directed in utero electroporation by a triple-electrode probe. Nat Commun 2012;3:960. https://doi.org/10.1038/ncomms1961
- Takahashi M, Sato K, Nomura T, Osumi N. Manipulating gene expressions by electroporation in the developing brain of mammalian embryos. Differentiation 2002;70:155-62. https://doi.org/10.1046/j.1432-0436.2002.700405.x
- Fukuchi-Shimogori T, Grove EA. Neocortex patterning by the secreted signaling molecule FGF8. Science 2001;294:1071-4. https://doi.org/10.1126/science.1064252
- Bai J, Ramos RL, Ackman JB, Thomas AM, Lee RV, LoTurco JJ. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci 2003;6:1277-83. https://doi.org/10.1038/nn1153
- Feliciano DM, Su T, Lopez J, Platel JC, Bordey A. Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice. J Clin Invest 2011;121:1596-607. https://doi.org/10.1172/JCI44909
- Shimogori T, Ogawa M. Gene application with in utero electroporation in mouse embryonic brain. Dev Growth Differ 2008;50:499-506. https://doi.org/10.1111/j.1440-169X.2008.01045.x
- Beaulieu CL, Samuels ME, Ekins S, McMaster CR, Edwards AM, Krainer AR, et al. A generalizable pre-clinical research approach for orphan disease therapy. Orphanet J Rare Dis 2012;7:39. https://doi.org/10.1186/1750-1172-7-39