• 제목/요약/키워드: molecular mobility

Search Result 289, Processing Time 0.029 seconds

Molecular Dynamics Simulation Study on the Wetting Behavior of a Graphite Surface Textured with Nanopillars

  • Saha, Joyanta K.;Matin, Mohammad A.;Jang, Jihye;Jang, Joonkyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1047-1050
    • /
    • 2013
  • Molecular dynamic simulations were performed to examine the wetting behavior of a graphite surface textured with nanoscale pillars. The contact angle of a water droplet on parallelepiped or dome-shaped pillars was investigated by systematically varying the height and width of the pillar and the spacing between pillars. An optimal inter-pillar spacing that gives the highest contact angle was found. The droplet on the dome-covered surface was determined to be more mobile than that on the surface covered with parallelepiped pillars.

Assessment of the Intermolecular π-π Configurations of Poly(3-Hexylthiophene) using Polarized Raman Spectroscopy

  • Juwon Kim;Myeongkee Park
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.3
    • /
    • pp.146-150
    • /
    • 2024
  • Precise molecular configuration elucidation of poly(3-hexylthiophene) (P3HT) through advanced spectroscopic techniques is pivotal for enhancing P3HT-based photovoltaic device efficiencies since its high charge-carrier mobility is directly correlated to its well-ordered structure. In this study, we examine Raman depolarization ratios of annealed and non-annealed P3HT films to elucidate their intermolecular π-π configurations. Our findings suggest that the backbone of the annealed film possesses stronger π-π conjugation overlaps than that of the non-annealed film owing to the greater depolarization ratio of the annealed film. In addition, the depolarization ratios are also supported by theoretical calculations, where parallel-stacked thiophene structures display a higher depolarization ratio compared with that of twisted-stacked structures, as calculated by the Møller-Plesset perturbation theory. This study highlights the utility of polarized Raman spectroscopy as a versatile tool for assessing the degree of molecular order in highly conjugated polymer films.

Inhibitory Effects of Momordin I Derivatives on the Formation of Fos-Jun-AP-1 DNA Complex

  • Lee, Ju-hyung;Park, Chi-Hoon;Kim, Wook-Hwan;Hwang, Yun-Ha;Jeong, Kyung-chae;Yang, Chul-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.535-538
    • /
    • 2006
  • In our previous studies, we have observed that curcumin and momordin I isolated from Ampelopsis radix inhibit the formation of Fos-Jun-activation protein-1 (AP-1) DNA complex. We have screened more effective compounds which have a 5-membered ring framework like momordin I and have modified disaccharide or carboxylic acid portions in momordin I. We synthesized momordin I derivatives according to the published method with slight modification. Synthetic momordin I derivatives showed remarkable inhibitory activities on Fos-Jun-AP-1 DNA complex formation results in in vitro assays. The $IC_{50}$ values of momordin I derivatives were about 4.0 $\mu$M in an electrophoretic mobility shift assay (EMSA). This value is about 125 times higher than that of curcumin and about 12 times higher than that for curcumin derivative C1, and moreover about 30 times higher than that for momordin I. We found momordin I derivatives (a) and (b) are the strongest inhibitory compound for Fos-Jun-AP-1 DNA complex formation.

Fluorene-Based Conjugated Copolymers Containing Hexyl-Thiophene Derivatives for Organic Thin Film Transistors

  • Kong, Ho-Youl;Chung, Dae-Sung;Kang, In-Nam;Lim, Eun-Hee;Jung, Young-Kwan;Park, Jong-Hwa;Park, Chan-Eon;Shim, Hong-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1945-1950
    • /
    • 2007
  • Two fluorene-based conjugated copolymers containing hexyl-thiophene derivatives, PF-1T and PF-4T, were synthesized via the palladium-catalyzed Suzuki coupling reaction. The number-average molecular weights (Mn) of PF-1T and PF-4T were found to be 19,100 and 13,200, respectively. These polymers were soluble in common organic solvents such as chloroform, chlorobenzene, toluene, etc. The UV-vis absorption maximum peaks of PF-1T and PF-4T in the film state were found to be 410 nm and 431 nm, respectively. Electrochemical characterization revealed that these polymers have low highest occupied molecular orbital (HOMO) levels, indicating good resistance against oxidative doping. Thin film transistor devices were fabricated using the top contact geometry. PF-1T showed much better thin-film transistor performance than PF-4T. A thin film of PF- 1T gave a saturation mobility of 0.001-0.003 cm2 V?1 s?1, an on/off ratio of 1.0 × 105, and a small threshold voltage of ?8.3 V. To support TFT performance, we carried out DSC, AFM, and XRD measurements.

Calculation of the Absolute Rate of Human Cu/Zn Superoxide Dismutases from Atomic-Level Molecular Dynamics Simulations

  • Lee, Jin-Uk;Lee, Woo-Jin;Park, Hwang-Seo;Lee, Sang-Youb
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.862-868
    • /
    • 2012
  • Based on the recently derived general expression for the rates of diffusion-controlled reactions, we calculate the rates of dismutation of the superoxide anion radical catalyzed by Cu/Zn superoxide dismutases (SOD). This is the first attempt to calculate the absolute rates of diffusion-controlled enzyme reactions based on the atomiclevel molecular dynamics simulations. All solvent molecules are included explicitly and the effects of the structural flexibility of enzyme, especially those of side chain motions near the active site, are included in the present calculation. In addition, the actual mobility of the substrate molecule is taken into account, which may change as the molecule approaches the active site of enzyme from the bulk solution. The absolute value of the rate constant for the wild type SOD reaction obtained from MD simulation is shown to be in good agreement with the experimental value. The calculated reactivity of a mutant SOD is also in agreement with the experimental result.

Molecular Dynamics Simulation Study for Hydroxide Ion in Supercritical Water using SPC/E Water Potential

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2925-2930
    • /
    • 2013
  • We present results of molecular dynamics simulations for hydroxide ion in supercritical water of densities 0.22, 0.31, 0.40, 0.48, 0.61, and 0.74 g/cc using the SPC/E water potential with Ewald summation. The limiting molar conductance of $OH^-$ ion at 673 K monotonically increases with decreasing water density. It is also found that the hydration number of water molecules in the first hydration shells around the $OH^-$ ion decreases and the potential energy per hydrated water molecule also decreases in the whole water density region with decreasing water density. Unlike the case in our previous works on LiCl, NaCl, NaBr, and CsBr [Lee at al., Chem. Phys. Lett. 1998, 293, 289-294 and J. Chem. Phys. 2000, 112, 864-869], the number of hydrated water molecules around ions and the potential energy per hydrated water molecule give the same effect to cause a monotonically increasing of the diffusion coefficient with decreasing water density in the whole water density region. The decreasing residence times are consistent with the decreasing potential energy per hydrated water molecule.

Transcriptional Activation of CuIZn Superoxide Dismutase And Catalase Genes by Panaxadiol Ginsenosides Extracted From Panax ginseng

  • Chang, Mun-Seog;Yoo, Hae-Yong;Rho, Hyune-Mo
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.63-70
    • /
    • 1998
  • Superoxide dismutase (SOD) and catalase constitute the first coordinated unit of defense against reactive oxygen species. Here, we examined the effect of ginseng saponins on the induction of SOD and catalase gene expression. To explore this possibility, the upstream regulatory promoter region of Cu/Zn superoxide dismutase (SODI) and catalase genes were linked to the chloramphenicol acetyl-transferase (CATI structural gene and introduced into human hepatoma HepG2 cells. Total saponin and panaxatriol did not activate the transcription of SODI and catalase genes but panaxadiol increased the transcription of these genes about 2-3 fold. Among the Panaxadiol ginsenosides, the Rb2 subtraction appeared to is a major induce of SODI and catalase genes. Using the deletion analyses and mobility shift assays, we showed that the 5051 gene was greatly activated by ginsenoside Rba through transcription factor AP2 binding sites and its induction. We also examined the effect of the content ratio of panaxadiol extracted from various compartment of ginseng on the transcription of 5031 gene. Saponin extract that contains 2.6-fold more PD than PT from the fine root Increased the SODI induction about 3-fold. These results suggest that the panaxadiol fraction and its ginsenosides could induce the antioxidant enzymes, which are important for maintaining cell viability by lowering level of oxygen radical generated from intracellular metabolism.

  • PDF

Molecular dynamics simulation of primary irradiation damage in Ti-6Al-4V alloys

  • Tengwu He;Xipeng Li;Yuming Qi;Min Zhao;Miaolin Feng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1480-1489
    • /
    • 2024
  • Displacement cascade behaviors of Ti-6Al-4V alloys are investigated using molecular dynamics (MD) simulation. The embedded atom method (EAM) potential including Ti, Al and V elements is modified by adding Ziegler-Biersack-Littmark (ZBL) potential to describe the short-range interaction among different atoms. The time evolution of displacement cascades at the atomic scale is quantitatively evaluated with the energy of primary knock-on atom (PKA) ranging from 0.5 keV to 15 keV, and that for pure Ti is also computed as a comparison. The effects of temperature and incident direction of PKA are studied in detail. The results show that the temperature reduces the number of surviving Frenkel pairs (FPs), and the incident direction of PKA shows little correlation with them. Furthermore, the increasing temperature promotes the point defects to form clusters but reduces the number of defects due to the accelerated recombination of vacancies and interstitial atoms at relatively high temperature. The cluster fractions of interstitials and vacancies both increase with the PKA energy, whereas the increase of interstitial cluster is slightly larger due to their higher mobility. Compared to pure Ti, the presence of Al and V is beneficial to the formation of interstitial clusters and indirectly hinders the production of vacancy clusters.

In Vivo Stem Cell Imaging Principles and Applications

  • Seongje Hong;Dong-Sung Lee;Geun-Woo Bae;Juhyeong Jeon;Hak Kyun Kim;Siyeon Rhee;Kyung Oh Jung
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.363-375
    • /
    • 2023
  • Stem cells are the foundational cells for every organ and tissue in our body. Cell-based therapeutics using stem cells in regenerative medicine have received attracting attention as a possible treatment for various diseases caused by congenital defects. Stem cells such as induced pluripotent stem cells (iPSCs) as well as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and neuroprogenitors stem cells (NSCs) have recently been studied in various ways as a cell-based therapeutic agent. When various stem cells are transplanted into a living body, they can differentiate and perform complex functions. For stem cell transplantation, it is essential to determine the suitability of the stem cell-based treatment by evaluating the origin of stem, the route of administration, in vivo bio-distribution, transplanted cell survival, function, and mobility. Currently, these various stem cells are being imaged in vivo through various molecular imaging methods. Various imaging modalities such as optical imaging, magnetic resonance imaging (MRI), ultrasound (US), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) have been introduced for the application of various stem cell imaging. In this review, we discuss the principles and recent advances of in vivo molecular imaging for application of stem cell research.

The Effect of 1-Propanol on the Rotational Mobility of n-(9-Anthroyloxy) stearic acid in Outer Monolayers of Neuronal and Model Membranes

  • Ahn, Tae-Young;Jin, Seong-Deok;Yang, Hak-Jin;Yoon, Chang-Dae;Kim, Mi-Kyung;An, Taek-Kyung;Bae, Young-Jun;Seo, Sang-Jin;Kim, Gwon-Su;Bae, Moon-Kyoung;Bae, Soo-Kyoung;Jang, Hye-Ock
    • International Journal of Oral Biology
    • /
    • v.42 no.4
    • /
    • pp.175-181
    • /
    • 2017
  • The aim of this study was to provide a basis for the molecular mechanism underlying the pharmacological action of ethanol. We studied the effects of 1-propanol on the location of n-(9-anthroyloxy)palmitic acid or stearic acid (n-AS) within the phospholipids of synaptosomal plasma membrane vesicles (SPMV). The SPMV were isolated from the bovine cerebral cortex and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL). 1-Propanol increased the rotational mobility of inner hydrocarbons, while decreasing the mobility of membrane interface, in native and model membranes. The degree of rotational mobility varied with the number of carbon atoms at positions 16, 12, 9, 6 and 2 in the aliphatic chain of phospholipids in the neuronal and model membranes. The sensitivity of increasing or decreasing rotational mobility of hydrocarbon interior or surface by 1-propanol varied with the neuronal and model membranes in the following order: SPMV, SPMVPL and SPMVTL.