DOI QR코드

DOI QR Code

Molecular Dynamics Simulation Study on the Wetting Behavior of a Graphite Surface Textured with Nanopillars

  • Saha, Joyanta K. (Department of Nanomaterials Engineering, Pusan National University) ;
  • Matin, Mohammad A. (Department of Nanomaterials Engineering, Pusan National University) ;
  • Jang, Jihye (Department of Nanomaterials Engineering, Pusan National University) ;
  • Jang, Joonkyung (Department of Nanomaterials Engineering, Pusan National University)
  • Received : 2012.12.03
  • Accepted : 2013.01.08
  • Published : 2013.04.20

Abstract

Molecular dynamic simulations were performed to examine the wetting behavior of a graphite surface textured with nanoscale pillars. The contact angle of a water droplet on parallelepiped or dome-shaped pillars was investigated by systematically varying the height and width of the pillar and the spacing between pillars. An optimal inter-pillar spacing that gives the highest contact angle was found. The droplet on the dome-covered surface was determined to be more mobile than that on the surface covered with parallelepiped pillars.

Keywords

References

  1. Nakajima, A.; Hashimoto, K.; Watanabe, T.; Takai, K.; Yamauchi, G.; Fujishima, A. Langmuir 2000, 16, 7044. https://doi.org/10.1021/la000155k
  2. Michielsen, S.; Lee, H. J. Langmuir 2007, 23, 6004. https://doi.org/10.1021/la063157z
  3. Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Advanced Materials 2002, 14, 1857. https://doi.org/10.1002/adma.200290020
  4. He, B.; Lee, J.; Patankar, N. A. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2004, 248, 101. https://doi.org/10.1016/j.colsurfa.2004.09.006
  5. Hyväluoma, J.; Timonen, J. Journal of Statistical Mechanics: Theory and Experiment 2009, 2009, P06010.
  6. Patankar, N. A. Langmuir 2004, 20, 8209. https://doi.org/10.1021/la048629t
  7. Tuteja, A.; Choi, W.; Ma, M.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E. Science 2007, 318, 1618. https://doi.org/10.1126/science.1148326
  8. Kantesh, B.; Ruben Galiano, B.; Debrupa, L.; Arvind, A. Nanotechnology 2009, 20, 305707. https://doi.org/10.1088/0957-4484/20/30/305707
  9. Lundgren, M.; Allan, N. L.; Cosgrove, T. Langmuir 2006, 23, 1187.
  10. Seung-Mo, L.; Tai Hun, K. Journal of Micromechanics and Microengineering 2007, 17, 687. https://doi.org/10.1088/0960-1317/17/4/003
  11. Narhe, R. D.; Beysens, D. A. EPL (Europhysics Letters) 2006, 75, 98. https://doi.org/10.1209/epl/i2006-10069-9
  12. Lafuma, A.; Quere, D. Nat Mater 2003, 2, 457. https://doi.org/10.1038/nmat924
  13. Bok, H.-M.; Kim, S.; Yoo, S.-H.; Kim, S. K.; Park, S. Langmuir 2008, 24, 4168. https://doi.org/10.1021/la7026972
  14. Ho, A. Y. Y.; Yeo, L. P.; Lam, Y. C.; Rodriìguez, I. ACS Nano 2011, 5, 1897. https://doi.org/10.1021/nn103191q
  15. Martines, E.; Seunarine, K.; Morgan, H.; Gadegaard, N.; Wilkinson, C. D. W.; Riehle, M. O. Nano Letters 2005, 5, 2097. https://doi.org/10.1021/nl051435t
  16. Nosonovsky, M.; Bhushan, B. Nano Letters 2007, 7, 2633. https://doi.org/10.1021/nl071023f
  17. Dorrer, C.; Ruhe, J. Langmuir 2006, 22, 7652. https://doi.org/10.1021/la061452d
  18. Narhe, R. D.; Beysens, D. A. Langmuir 2007, 23, 6486. https://doi.org/10.1021/la062021y
  19. Berendsen, H. J. C.; Postma, J. P. M.; Gunsteren, W. F. V.; Hermans, J. In Intermolecular Forces; Pullmann, B., Ed.; Reidel Publishing Company: Dordrecht, 1981; p 331.
  20. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Claredon Press: Oxford, 1987.
  21. Miyamoto, S.; Kollman, P. A. Journal of Computational Chemistry 1992, 13, 952. https://doi.org/10.1002/jcc.540130805
  22. Evans, D. J.; Morriss, O. P. Computer Physics Reports 1984, 1, 297. https://doi.org/10.1016/0167-7977(84)90001-7
  23. Smith, W.; Yong, C. W.; Rodger, P. M. Molecular Simulation 2002, 28, 385. https://doi.org/10.1080/08927020290018769
  24. Marquardt, D. J. Soc. Ind. Appl. Math. 1963, 11, 431. https://doi.org/10.1137/0111030
  25. Giovambattista, N.; Debenedetti, P. G.; Rossky, P. J. The Journal of Physical Chemistry B 2007, 111, 9581. https://doi.org/10.1021/jp071957s
  26. Good, R. J.; Koo, M. N. Journal of Colloid and Interface Science 1979, 71, 283. https://doi.org/10.1016/0021-9797(79)90239-X

Cited by

  1. Nanoscale Insight into the Mechanism of a Highly Oriented Pyrolytic Graphite Edge Surface Wetting by “Interferencing” Water vol.33, pp.34, 2017, https://doi.org/10.1021/acs.langmuir.7b02113
  2. Molecular dynamics simulations of wetting behavior of water droplets on polytetrafluorethylene surfaces (8 pages) vol.140, pp.11, 2013, https://doi.org/10.1063/1.4868641
  3. Water nanodroplet on a graphene surface—a new old system vol.28, pp.49, 2013, https://doi.org/10.1088/0953-8984/28/49/495002
  4. Wetting properties of structured interfaces composed of surface-attached spherical nanoparticles vol.143, pp.None, 2018, https://doi.org/10.1016/j.commatsci.2017.11.036
  5. Research and Prediction of Wettability of Irregular Square Column Structure on Polymethyl Methacrylate (PMMA) Surface Prepared by Femtosecond Laser vol.11, pp.5, 2013, https://doi.org/10.3390/coatings11050529