References
- Villalain J, Prieto M. Location and interaction of N-(9-anthroyloxy)-stearic acid probes incorporated in phosphatidylcholine vesicles. Chem Phys Lipids. 1991; 59:9-16. https://doi.org/10.1016/0009-3084(91)90058-J
- Mason JT. Properties of phosphatidylcholine bilayers as revealed by mixed-acyl phospholipid fluorescent probes containing n-(9-anthroyloxy) fatty acids. Biochim Biophys Acta. 1994; 1194: 99-108. doi:https://doi.org/10.1016/0005-2736(94)90207-0.
- Thulborn KR, Sawyer WH. Properties and the locations of a set of fluorescent probes sensitive to the fluidity gradient of the lipid bilayer. Biochim Biophys Acta. 1978; 511: 125-40. doi:https://doi.org/10.1016/0005-2736(78)90308-5.
- Tilley L et al. An assessment of the fluidity gradient of the lipid bilayer as determined by a set of n-(9-anthroyloxy) fatty acids (n=2, 6, 9, 12, 16). J Biol Chem. 1979; 254: 2592-4.
- Molitoris BA, Hoilien C. Static and dynamic components of renal cortical brush border and basolateral membrane fluidity: role of cholesterol. J Membr Biol. 1987; 99: 165-72. https://doi.org/10.1007/BF01995697
- Yun I et al. Amphiphilic effects of local anesthetics on rotational mobility in neuronal and model membranes. Biochim Biophys Acta. 2002; 1564: 123-32. doi:https://doi.org/10.1016/S0005-2736(02)00409-1.
- Yun I, Kang J-S. The general lipid composition and aminophospholipid asymmetry of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex. Mol Cells. 1990; 1: 15-20.
- Yun I et al. Comparision of several procedures for the preparation of synaptosomal plasma membrane vesicles. Arch Pharm Res. 1990; 13: 325-9. doi:https://doi.org/10.1007/BF02858167.
- Lowry OH et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193: 265-75
- Huang TC et al. A stable reagent for the Liebermann-Burchard reaction. Anal Chem. 1961; 33: 1405-7. doi:https://doi.org/10.1021/ac60178a040 .
- Bartlett GR. Phosphorous assay in column chromatography. J Biol Chem. 1959; 234: 466-8.
- Madeira VMC, Antunes-Madeira MC. Lipid composition of biomembranes: a complete analysis of sarcoplasmic reticulum phospholipids. Cienc Biol (Coimbra). 1976; 2: 265-91.
- Lasic DD. The mechanism of vesicle formation. Biochem J. 1988; 256: 1-11. doi:https://doi.org/10.1042/bj2560001.
- Bagatolli LA, Gratton E. Two photon fluorescence microscopy of coexisiting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J. 2000; 78: 290-305. doi:https://doi.org/10.1016/S0006-3495(00)76592-1.
- Menger FM, Keiper JS. Chemistry and physics of giant vesicles as biomembrane models. Curr Opin Chem Biol. 1998; 2: 726-32. doi:https://doi.org/10.1016/S1367-5931(98)80110-5.
- Angelova ML, Dimitrov DS. Liposome electroformation. Faraday Discuss Chem Soc. 1986; 81: 303-11. doi:https://doi.org/10.1039/DC9868100303.
- Angelova ML, Dimitrov DS. Lipid swelling and liposome formation on solid surfaces in external electric fields. Prog Colloid Polym Sci. 1987; 73: 48-56. doi:https://doi.org/10.1007/3-798-50724-4_62.
- Angelova ML et al. Preparation of giant vesicles by external AC fields, kinetics and application. Prog Colloid Polym Sciz. 1992; 89: 127-31. doi:https://doi.org/10.1007/BFb0116295.
- Bagatolli LA, Gratton E. Two photon fluorescence microscopy observation of shape change at the phase transition in phospholipid giant unilamellar vesicles. Biophys J. 1999; 77: 2090-2101. doi:https://doi.org/10.1016/S0006-3495(99)77050-5.
- Bagatolli LA, Gratton E. Two photon fluorescence microscopy of coexisiting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J. 2000; 78: 290-305. doi:https://doi.org/10.1016/S0006-3495(00)76592-1.
- Lee YH et al. Amphiphilic effects of dibucaine.HCl on rotational mobility of n-(9-anthroyloxy)stearic acid in neuronal and model membranes. Chem Phys Lipids. 2007; 146: 33-42. doi:https://doi.org/10.1016/j.chemphyslip.2006.12.002.
- Abrams FS, London E. Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry. 1993; 32: 10826-31. doi:https://doi.org/10.1021/bi00091a038.
- Tricerri MA et al. Lipid chain order and dynamics at different bilayer depths in liposomes of several phosphatidylcholines studied by differential polarized phase fluorescence. Chem Phys Lipids. 1994; 71: 61-72. doi:https://doi.org/10.1016/0009-3084(94)02303-4.
- Boggs JM. Lipid intramolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta. 1987; 906: 353-404. doi:https://doi.org/10.1016/0304-4157(87)90017-7.
- Shibata A et al. Site of action of the local anesthetic tetracaine in a phosphatidylcholine bilayer with incorporated cardiolipin. Biophys J. 1995; 69: 470-7. doi:https://doi.org/10.1016/S0006-3495(95)79920-9.
- Scherer PG, Seeling J. Electric charge effects on phospholipid headgroups. Phosphatidylcholine in mixtures with cationic and anionic amphiphiles. Biochemistry. 1989; 28: 7720-8. doi:https://doi.org/10.1021/bi00445a030.
- Teeter MM. Water-protein interaction: theory and experiment. Annu Rev Biophys Biophys Chem. 1991; 20: 577-600. doi: https://doi.org/10.1146/annurev.bb.20.060191.003045.
- Jacobs RE, White SH. The nature of the hydrophobic binding of small peptides at the bilayer interface. Implications for the insertion of transbilayer helices. Biochemistry. 1989; 28: 3421-37. doi:http://doi.org/10.1021/bi00434a042.
- Yun I et al. Transbilayer effects of ethanol on the fluidity of the plasma membrane vesicles of cultured Chinese hamster ovary cells. Asia Pacific J Pharmacol. 1993; 8: 9-16.
- Yun I et al. Effects of ethanol on lateral and rotational mobility of plasma membrane vesicles isolated from cultured Mar 18.5 hybridoma cells. J Membr Biol. 1994; 138: 221-7. doi:https:// doi.org/10.1007/BF00232794.
- Kang J-S et al. Effects of ethanol on lateral and rotational mobility of plasm a membrane vesicles isolated from cultured mouse myeloma cell line Sp2/0-Ag14. Biochim Biophys Acta. 1996; 1281: 157-63. doi:https://doi.org/10.1016/0005-2736(95)00301-0.
- Bae MK et al. The effect of ethanol on the physical properties of neuronal membranes. Mol Cells. 2005; 19: 356-64.
- Alling C et al. Phosphatidylethanol formation in rat organs after ethanol treatment. Biochim Biophys Acta. 1984; 793: 119-22. doi:https://doi.org/10.1016/0005-2760(84)90060-2.
- Omodeo-Sale MF et al. Enzymatic synthesis and thermotropic behavior of phosphatidylethanol. Chem Phys Lipids. 1989; 50: 135-42. doi:https://doi.org/10.1016/0009-3084(89)90037-6.
- Omodeo-Sale et al. Role of phosphatidylethanol in membranes. Effects on membrane fluidity, tolerance to ethanol, and activity of membrane-bound enzymes. Biochemistry. 1991; 30: 2477-82. doi:https://doi.org/10.1021/ bi00223a026.