• Title/Summary/Keyword: molecular mechanism

Search Result 2,741, Processing Time 0.029 seconds

Photochemical and Thermal Reaction Mechanism for the Reaction of Carcinogenic Molecules and Food Reservatives (발암성 분자와 식품보존제의 광화학 및 열적 반응메카니즘)

  • 김민식;채기수;김갑순;성대동
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.3
    • /
    • pp.267-271
    • /
    • 1998
  • The photochemical carcinogenic reaction mechanism and molecular carcinogenic intensity through the reaction of dibromo carbene and diazomethane with dehydroacetic acid and coumarin have been studied under the two kinds of photolysis. The reaction intensities show the degree of carcinogenic activity. Under the condition of UV/vis light source, the yield of high toxic carcinogenetic carbene intermediate is produced less than those of the laser flash photolysis.

  • PDF

Agrobacterium tumefaciens-Mediated Genetic Transformation: Mechanism and Factors

  • Kumar, Nitish;Vijayanand, K.G.;Reddy, Myppala P.;Singh, Amritpal S.;Naraynan, Subhash
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.3
    • /
    • pp.195-204
    • /
    • 2009
  • Agrobacterium-mediated genetic transformation has been widely used for the production of genetically modified transgenic plants to obtain specific desired traits. Most of the molecular mechanisms that underlie the transformation steps have been well elucidated over the years. However, a few steps, such as nuclear targeting, T-DNA integration, and Agrobacterium-plant proteins involved remain largely obscure and are still under extensive studies. This review describes the major steps involved in the molecular mechanism of Agrobacterium-mediated transformation and provides insight in the recent developments in studies on the Agrobacterium-mediated genetic transformation system. Some factors affecting the transformation efficiency are also briefly discussed.

  • PDF

Physiological characterization of kinetics and action mechanism of vibrio hemolysin

  • Choe, Young-Chool;Jeong, Cajin
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.289-294
    • /
    • 1995
  • The action mechanism of hemolysin rendering virulency of Vibrio anguilarum has not clarified as yet, even though there were several possible factors explained. We have studied hemolytic kinetics performed by hemolysin from V. anguillarum strain V7 as well as binding of hemolysin to RBC membrane. Maximal rate of hemolysis and duration of lag phase were directly and inversly correlated to the concentration of hemolysin used. Hemolysin molecules are known to bind consumptively with proper diameter, while other protectants with smaller diameter could not. In conclusion, hemolysin should bind irreversibly to RBC membrane exert hemolysis distorting osmotic pressure. The binding could be hindered by spatial structure of the RBC surfacem which might be caused by sialic acid.

  • PDF

Action Mechanism of Enhancers for Activating Gene Transcription

  • Yea Woon Kim;AeRi Kim
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.103-108
    • /
    • 2023
  • Enhancers are cis-elements to regulate transcription of cell/tissue-specific genes in multicellular organisms. These elements locate in upstream or downstream regions of target genes and are found in a long distance up to 100 Kb in some cases. Transcription factors and coactivators bind to enhancers in a chromatin environment. Enhancers appear to facilitate the transcription of target genes by communicating with promoters and activating them. As transcription activation mechanism of enhancers, chromatin looping between enhancers and promoters, tracking of enhancer activity to promoters along the intervening regions, and movement of enhancers and promoters into transcription condensates have been suggested based on various molecular and cellular biology studies. These mechanisms are likely to act together rather than exclusive each other for gene transcription. Understanding of enhancer action mechanism may provide a way to regulate the transcription of cell/tissue-specific genes relating with aging or various diseases.

Molecular characterization and inhibition analysis of the acetylcholinesterase gene from the silkworm maggot, Exorista sorbillans

  • Lang, Guo-Jun;Zhang, Ming-Yan;Li, Bao-Ling;Yu, Lin-Lin;Lu, Xing-Meng;Zhang, Chuan-Xi
    • BMB Reports
    • /
    • v.43 no.8
    • /
    • pp.573-578
    • /
    • 2010
  • Several organophosphorus (OP) insecticides can selectively kill the silkworm maggot, Exorista sorbillans (Es) (Diptera: Tachinidae), while not obviously affecting the host (Bombyx mori) larvae, but the mechanism is not yet clear. In this study, the cDNA encoding an acetylcholinesterase (AChE) from the field Es was isolated. One point mutation (Gly353Ala) was identified. The Es-353G AChE and Es-353A AChE were expressed in baculovirus-insect cell system, respectively. The inhibition results showed that for eserine and Chlorpyrifos, Es-353A AChE was significantly less sensitive than Es-353G AChE. Meanwhile, comparison of the I50 values of eserine, dichlorvos, Chlorpyrifos and omethoate of recombinant Es AChEs with its host (Bombyx mori) AChEs indicated that, both Es AChEs are more sensitive than B. mori AChEs. The results give an insight of the mechanism that some OP insecticides can selectively kills Es while without distinct effect on its host, B. mori.

Molecular Modeling of the Chiral Recognition of Propranolol Enantiomers by a β-Cyclodextrin

  • Kim, Hyun-myung;Jeong, Karp-joo;Lee, Sang-san;Jung, Seun-ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.95-98
    • /
    • 2003
  • Enantioselectivity of the propranolol on β-cyclodextrin was simulated by molecular modeling. Monte Carlo (MC) docking and molecular dynamics (MD) simulations were applied to investigate the molecular mechanism of enantioselective difference of both enantiomeric complexes. An energetic analysis of MC docking simulations coupled to the MD simulations successfully explains the experimental elution order of propranolol enantiomers. Molecular dynamics simulations indicate that average energy difference between the enantiomeric complexes, frequently used as a measure of chiral recognition, depends on the length of the simulation time. We found that, only in case of much longer MD simulations, noticeable chiral separation was observed.

Analysis of Charge Transfer Mechanism in Molecular Memory Device using Temperature-dependent Electrical Measurement (온도에 의존하는 전기적 측정을 이용한 분자 메모리 소자의 전하 이동 메커니즘 분석)

  • Choi, Kyung-Min;Koo, Ja-Ryong;Kim, Young-Kwan;Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.615-619
    • /
    • 2008
  • A molecular memory device which has a structure of Al/$Al_2O_3$/ASA-15 LB monolayer/Ti/Al device, was fabricated. To study a charge transfer mechanism of molecular memory devices, current density-voltage (J-V) characteristics were measured at an increasing temperature range from 10 K to 300 K with an interval of 30 K. Strong temperature-dependent electrical property and tunneling through organic monolayer at low bias (below 0.5 V) were appeared. These experimental data were fitted by using a theoretical formula such as the Simmons model. In comparison between the theoretical and the experimental results, it was verified that the fitting results using the Simmons model about direct tunneling was fairly fitted below 0.5 V at both 300 K and 10 K. Hopping conduction was also dominant at all voltage range above 200 K due to charges trapped by defects located within the dielectric stack, including the $Al_2O_3$, organic monolayer and Ti interfaces.

Mechanism of Antibiotic Action and Biosynthesis of Centipedin Purified from Scolopendra subspinipes multilans L. Koch (Centipede)

  • Kim, Ki-Tae;Hong, Sa-Weon;Lee, Jong-Ho;Park, Kyung-Bae;Cho, Key-Seung
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.328-332
    • /
    • 1998
  • The 8-hydroxyisocoumarin, named Centipedin, which has a significant antibiotic activity, was separated and solubilized with organic solvents, such as diethyl ether from centipede Scolopendra subspinipes multilans L. Koch. The Centipedin was purified by silicic acid column and high S cation exchange chromatography followed by reverse-phase HPLC. It was confirmed that Centipedin has a potent antibiotic effectiveness against Gram-negative Klebsiella pneumoniae ATCC 8308. The results showed that Centipedin blocks both DNA replication and RNA transcription during the growth of this pathogen in vivo. The biosynthesis of antibiotic 8-hydroxyisocoumarin was studied in vivo by feeding $[^{14}C]-labelled$ compound as a precursor to live centipede, in which $[^{14}C]acetate$ was the most efficiently incorporated into the Centipedin within 30 h after injection. Also, in vitro study on the biosynthesis of Centipedin showed that efficient incorporation of $[^{14}C]acetate$ occurred at pH range 5.0-7.0 for 10 h incubation and decreased significantly after then. It is suggested that 8-hydroxyisocoumarin is one of the defense compounds acting on bacterial infection in Scolopendra subspinipes.

  • PDF

MAP kinase kinase kinase as a positive defense regulator in rice-blast fungus interactions

  • Kim, Jung-A;Jung, Young-Ho;Lee, Joo-Hee;Jwa, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2004.10a
    • /
    • pp.48-52
    • /
    • 2004
  • We have found the role of rice mitogen-activated protein kinase kinase kinase (MAPKKK), OsEDR1, as controling hypersensitive response (HR) and increased disease resistance to rice blast fungus Magnaporthe grisea. Generation of transgenic rice plants through introduction of the over-expression construct of OsEDR1 using Agrobacterium-mediated transformation results in lesion mimic phenotype. Up-regulation of defense mechanism was detected through detection of increased transcription level of rice PBZ1 and PR1a. Inoculation of rice blast fungus on the lesion mimic transgenic lines displayed significantly increased resistance. The disease symptoms were arrested like HR responses which are commonly detected in the incompatible interactions. High accumulation of phenolic compounds around developing lesions was detected under UV light. There was variation among transgenic lines on the timing of lesion progression as well as the lesion numbers on the rice leaves. Transgenic lines with few lesions also show increased resistance as well as equal amount of grain yields compared to that of wild type rice cultivar Nipponbare. This is the first report of the MAPKKK as a positive regulator molecule on defense mechanism through inducing HR-like cell death lesion mimic phenotype. The application of OsEDR1 is highly expected for the development of resistant cultivars against rice pathogens.

  • PDF