• Title/Summary/Keyword: molecular evidence

Search Result 908, Processing Time 0.029 seconds

Development of real-time PCR for rapid detection of Mycobacterium bovis DNA in cattle lymph nodes and differentiation of M. bovis and M. tuberculosis (소 림프절에서 Mycobacterium bovis DNA의 신속 검출과 M. bovis와 M. tuberculosis 감별을 위한 real-time PCR 개발)

  • Koh, Ba-Ra-Da;Jang, Young-Boo;Ku, Bok-Kyung;Cho, Ho-Seong;Bae, Seong-Yeol;Na, Ho-Myung;Park, Seong-Do;Kim, Yong-Hwan;Mun, Yong-Un
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.4
    • /
    • pp.321-331
    • /
    • 2011
  • Mycobacterium bovis, a member of the M. tuberculosis complex (MTC), is the causative agent of bovine tuberculosis. Detection of M. bovis and M. tuberculosis using conventional culture- and biochemical-based assays is time-consuming. Therefore, a simple and sensitive molecular assay for rapid detection would be of great help in specific situations such as faster diagnosis of bovine tuberculosis (bTB) infection in the abattoirs. We developed a novel multiplex real-time PCR assay which was applied directly to biological samples with evidence of bTB and it was allowed to differentiate between M. bovis and M. tuberculosis. The primers and TaqMan probes were designed to target the IS1081 gene, the multi-copy insertion element in the MTC and the 12.7-kb fragment which presents in M. tuberculosis, not in the M. bovis genome. The assay was optimized and validated by testing 10 species of mycobacteria including M. bovis and M. tuberculosis, and 10 other bacterial species such as Escherichia coli, and cattle lymph nodes (n=113). The tests identified 96.4% (27/28) as M. bovis from the MTC-positive bTB samples using conventional PCR for specific insertion elements IS1081. And MTC-negative bTB samples (n=85) were tested using conventional PCR and the real-time PCR. When comparative analyses were conducted on all bovine samples, using conventional PCR as the gold standard, the relative accuracy of real-time PCR was 99.1%, the relative specificity was 100%, and the agreement quotient (kappa) was 0.976. The detection limits of the real-time PCR assays for M. bovis and M. tuberculosis genomic DNA were 10 fg and 0.1 pg per PCR reaction, respectively. Consequently, this multiplex real-time PCR assay is a useful diagnotic tool for the identification of MTC and differentiation of M. bovis and M. tuberculosis, as well as the epidemiologic surveillance of animals slaughtered in abattoir.

Effects of Lycii Fructus and Lycii Folium Extracts on Osteoporosis in Ovariectomized Rats (구기자와 구기엽 추출물이 난소적출 흰쥐의 골다공증에 미치는 영향)

  • Kim, Jin-Ho;Kim, Jeong-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • The effects of Lycii fructus and Lycii folium on osteoporosis and serum cholesterol levels were tested in ovariectomized (OVX) rats. Twenty-four female Sprague-Dawley rats were divided into four groups: Sham group (sham-operated), Control group (OVX, ovariectomized model), LCF group (Ovx+Lycii fructus extract), and LCL group (OVX+Lycium folium extract). After 8 weeks, the OVX ($330{\pm}5.39$ g), LCF ($315{\pm}2.99$ g), and LCL ($318{\pm}2.06$ g) groups showed increased body weight compared with sham group ($281{\pm}1.71$ g). The levels of serum osteocalcin (OC) also increased in the LCF ($444.6{\pm}26.9$ ng/mL) and LCL ($407{\pm}18.9$ ng/mL) groups compared with the OVX group ($107{\pm}3.52$ ng/mL). The activities of serum alkaline phosphatase (ALP) increased in the LCF ($108{\pm}2.7$ U/L) and LCL ($407{\pm}18.9$ ng/mL) groups compared with the OVX group ($95{\pm}2.9$ U/L). Stereomicroscopy found that the low bone density that developed in the OVX group was significantly reversed in the LCF and LCL groups after 8 weeks. We also obtained molecular-based in vivo evidence that supports a mechanism of action involving novel estrogen receptor ($ER{\alpha}$) modulator in the uterus. We found that expression of ER${\alpha}$ mRNA in the OVX rat uterus was elevated by Lycium chinense. These results suggest that Lycii fructus and Lycii folium administered to rats during 8 weeks after oophorectomy may partially recover postmenopausal osteoporosis or delay the progression of osteoporotic changes.

Overexpression of Rcan1-1L Inhibits Hypoxia-Induced Cell Apoptosis through Induction of Mitophagy

  • Sun, Lijun;Hao, Yuewen;An, Rui;Li, Haixun;Xi, Cong;Shen, Guohong
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.785-794
    • /
    • 2014
  • Mitophagy, a cellular process that selectively targets dysfunctional mitochondria for degradation, is currently a hot topic in research into the pathogenesis and treatment of many human diseases. Considering that hypoxia causes mitochondrial dysfunction, which results in cell death, we speculated that selective activation of mitophagy might promote cell survival under hypoxic conditions. In the present study, we introduced the Regulator of calcineurin 1-1L (Rcan1-1L) to initiate the mitophagy pathway and aimed to evaluate the effect of Rcan1-1L-induced mitophagy on cell survival under hypoxic conditions. Recombinant adenovirus vectors carrying Rcan1-1L were transfected into human umbilical vein endothelial cells and human adult cardiac myocytes. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay and Trypan blue exclusion assay, Rcan1-1L overexpression was found to markedly reverse cell growth inhibition induced by hypoxia. Additionally, Rcan1-1L overexpression inhibited cell apoptosis under hypoxic conditions, as detected by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis assay. Meanwhile, the mitochondria-mediated cell apoptotic pathway was inhibited by Rcan1-1L. In contrast, knockdown of Rcan1-1L accelerated hypoxia-induced cell apoptosis. Moreover, Rcan1-1L overexpression significantly reduced mitochondrial mass, decreased depolarized mitochondria, and downregulated ATP and reactive oxygen species production. We further delineated that the loss of mitochondrial mass was due to the activation of mitophagy induced by Rcan1-1L. Rcan1-1L overexpression activated autophagy flux and promoted translocation of the specific mitophagy receptor Parkin into mitochondria from the cytosol, whereas inhibition of autophagy flux resulted in the accumulation of Parkin-loaded mitochondria. Finally, we demonstrated that mitochondrial 1permeability transition pore opening was significantly increased by Rcan1-1L overexpression, which suggested that Rcan1-1L might evoke mitophagy through regulating mitochondrial permeability transition pores. Taken together, we provide evidence that Rcan1-1L overexpression induces mitophagy, which in turn contributes to cell survival under hypoxic conditions, revealing for the first time that Rcan1-1L-induced mitophagy may be used for cardioprotection.

MicroRNA-3200-5p Promotes Osteosarcoma Cell Invasion via Suppression of BRMS1

  • Li, Gen;Li, Li;Sun, Qi;Wu, Jiezhou;Ge, Wei;Lu, Guanghua;Cai, Ming
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.523-531
    • /
    • 2018
  • Tumour metastasis is one of the most serious challenges of cancer as it is the major cause of mortality in patients with solid tumours, including osteosarcoma (OS). In this regard, anti-metastatic genes have potential for metastasis inhibition strategies. Recent evidence showed the importance of breast cancer metastasis suppressor 1 (BRMS1) in control of OS invasiveness, but the regulation of BRMS1 in OS remains largely unknown. Here, we used bioinformatics analyses to predict BRMS1-targeting microRNAs (miRNAs), and the functional binding of miRNAs to BRMS1 mRNA was evaluated using a dual luciferase reporter assay. Among all BRMS1-targeting miRNAs, only miR-151b, miR-7-5p and miR-3200-5p showed significant expression in OS specimens. Specifically, we found that only miR-3200-5p significantly inhibited protein translation of BRMS1 via pairing to the 3'-UTR of the BRMS1 mRNA. Moreover, we detected significantly lower BRMS1 and significantly higher miR-3200-5p in the OS specimens compared to the paired adjacent non-tumour bone tissues. Furthermore, BRMS1 and miR-3200-5p levels were inversely correlated to each other. Low BRMS1 was correlated with metastasis and poor patient survival. In vitro, overexpression of miR-3200-5p significantly decreased BRMS1 levels and promoted OS cell invasion and migration, while depletion of miR-3200-5p significantly increased BRMS1 levels and inhibited OS cell invasion and migration. Thus, our study revealed that miR-3200-5p may be a critical regulator of OS cell invasiveness.

Human Immunodeficiency Virus-l Tat Positively Regulates the Human CD99 Gene via DNA Demethylation (Human Immunodeficiency Virus-1 Tat 단백에 의한 인간 CD99유전자의 조절기전에 대한 연구)

  • Lee, Eu-Gene;Kim, Ye-Ri;Lee, Mi-Kyung;Lee, Im-Soon
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.277-281
    • /
    • 2008
  • HIV affects many organ systems. Patients with HIV infection have substantially increased risk of developing various cancers, primarily by opportunistic infection with oncogenic viruses due to their immunocompromised status. However, extensive evidence also indicates that the viral protein, Tat itself, may playas a major factor in the development of AIDS-related neoplasms. The molecular mechanism underlying Tat's oncogenic activity may include deregulation of cellular genes. Therefore, in this study, we examined the effect of HIV-l Tat on CD99 as one of the target cellular genes, which is a well-known tumor marker in several cancers. By using established HeLa clones that are stably expressing Tat, we found that CD99 is upregulated by endogenous Tat, whereas STAT3 is down regulated. Upon the screening of genes differentially expressed between Tat-stable cells and the control cells by using the gene fishing technique, DEG, we detected 3 genes which expression is affected by the presence of Tat. Furthermore, the methylation specific PCR analysis of the stably Tat expressing cell lines revealed that the CD99 promoter is de methylated in the presence of Tat. Taken together, these results open a potential role of CD99 in AIDS-related oncogenesis via epigenetic regulation by HIV-1 Tat.

Importance of Oxidative Stress in Ocular Dysfunction (안구의 기능이상에 대한 산화스트레스의 중요성)

  • Lee, Ji Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.103-109
    • /
    • 2008
  • Purpose: This review illustrates an importance of oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation in association with eye disease, especially of cataract, and discusses an important role of lipid peroxide as a mediator of oxidative stress-related ocular dysfunction. Methods: Oxidative stress, resulted from the cellular production of ROS and RNS, is known to cause various forms of cellular damages such as protein oxidation, DNA breaks, apoptosis, and lipid peroxidation. These damages can be developed to human diseases. Accumulating evidence strongly suggests that continuous or constant exposure of eye tissues to oxidative stress is a main cause of cataractogenesis. Therefore, we investigated the action of oxidative stress in ocular dysfunction. Results: The ocular lens is continuously attacked by ROS inevitable generated from the process of cellular metabolism and the chronic exposure to ultraviolet. Excessive generation of ROS, resulting in degradation, oxidation, crosslinking and aggregation of lens proteins, is regarded as an important factor in development of cataract. Conclusions: These oxidative stress and oxidant/antioxidant imbalance produces the excess ROS which can lead to eye dysfunction. Even though known results, it should be noted that there is limited information on the molecular mechanism which can be better defined with the interrelation of oxidative stress and optic abnormalities.

  • PDF

Myeloid-Derived Suppressor Cells Are Associated with Viral Persistence and Downregulation of TCR ζ Chain Expression on CD8+ T Cells in Chronic Hepatitis C Patients

  • Zeng, Qing-Lei;Yang, Bin;Sun, Hong-Qi;Feng, Guo-Hua;Jin, Lei;Zou, Zheng-Sheng;Zhang, Zheng;Zhang, Ji-Yuan;Wang, Fu-Sheng
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.66-73
    • /
    • 2014
  • Myeloid-derived suppressor cells (MDSCs) play an important role in impairing the function of T cells. We characterized MDSCs in two chronic hepatitis C (CHC) cohorts: a cross-sectional group that included 61 treatment-naive patients with CHC, 14 rapid virologic response (RVR) cases and 22 early virologic response (EVR) cases; and a longitudinal group of 13 cases of RVR and 10 cases of EVR after pegylated-interferon-${\alpha}$/ribavirin treatment for genotype 1b HCV infection. Liver samples from 32 CHC patients and six healthy controls were subjected to immunohistochemical analysis. MDSCs frequency in treatment-naive CHC was significantly higher than in RVR, EVR, or healthy subjects and was positively correlated with HCV RNA. Patients infected with HCV genotype 2a had a significantly higher frequency of MDSCs than those infected with genotype 1b. Decreased T cell receptor (TCR) ${\zeta}$ expression on $CD8^+$ T cells was significantly associated with an increased frequency of MDSCs in treatment-naive CHC patients and was restored by L-arginine treatment in vitro. Increased numbers of liver arginase-$1^+$ cells were closely associated with the histological activity index in CHC. The TCR ${\zeta}$ chain was significantly downregulated on hepatic $CD8^+$ T cells in CHC. During antiviral follow up, MDSCs frequency in peripheral blood mononuclear cells was directly correlated with the HCV RNA load in the plasma and inversely correlated with TCR ${\zeta}$ chain expression in $CD8^+$ T cells in both RVR and EVR cases. Notably, the RVR group had a higher frequency of MDSCs at baseline than the EVR group. Collectively, this study provides evidence that MDSCs might be associated with HCV persistence and downregulation of CD8 ${\zeta}$ chain expression.

A genome-wide association study of the association between single nucleotide polymorphisms and brachial-ankle pulse wave velocity in healthy Koreans

  • Xu, EnShi;Shin, Jinho;Lim, Ji Eun;Kim, Mi Kyung;Choi, Bo Youl;Shin, Min-Ho;Shin, Dong Hoon;Lee, Young-Hoon;Chun, Byung-Yeol;Hong, Kyung-Won;Hwang, Joo-Yeon
    • Journal of Genetic Medicine
    • /
    • v.14 no.1
    • /
    • pp.8-17
    • /
    • 2017
  • Purpose: Pulse wave velocity (PWV) is an indicator of arterial stiffness, and is considered a marker of vascular damage. However, a genome-wide association study analyzing single nucleotide polymorphisms (SNPs) associated with brachial-ankle PWV (baPWV) has not been conducted in healthy populations. We performed this study to identify SNPs associated with baPWV in healthy populations in Korea. Materials and Methods: Genomic SNPs data for 2,407 individuals from three sites were analyzed as part of the Korean Genomic Epidemiologic Study. Without replication samples, we performed multivariable analysis as a post hoc analysis to verify the findings in site adjusted analysis. Healthy subjects aged between 40 and 70 years without self-reported history or diagnosis of hypertension, diabetes, hyperlipidemia, heart disease, cerebrovascular disease and cancer were included. We excluded subjects with a creatinine level >1.4 mg/dL (men) and 1.2 mg/dL (women). Results: In the site-adjusted association analysis, significant associations (P<$5{\times}10^{-8}$) with baPWV were detected for only 5 SNPs with low minor allele frequency. In multivariable analysis adjusted by age, sex, height, body mass index, mean arterial pressure, site, smoking, alcohol, and exercise, 11 SNPs were found to be associated (P<$5{\times}10^{-8}$) with baPWV. The 5 SNPs (P<$5{\times}10^{-8}$) linked to three genes (OPCML, PRR35 and RAB40C) were common between site-adjusted analysis and multivariable analysis. However, meta-analysis of the result from three sites for the 11 SNPs showed no significant associations. Conclusion: Using the recent standard for genome-wide association study, we did not find any evidence of significant association signals with baPWV.

The Signal Transduciton of Ginsenosides, Active Ingredients of Panax ginseng, in Xenopus oocyte: A Model System for Ginseng Study

  • Nah Seung-Yeol;Lee Sang-Mok
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.66-83
    • /
    • 2002
  • Recently, we have provided evidence that ginsenosides, the active components of Panax ginseng, utilize pertussis toxin (PTX)-insensitive $G{\alpha}_{q/11}-phospholipase\;C-{\beta}3(PLC-{\beta}3)$ signal transduction pathway for the enhancement of $Ca^{2+}-activated\;Cl^{-}$ current in the Xenopus oocyte (British J. Pharmacol. 132, 641-647, 2001; JBC 276, 48797-48802, 2001). Other investigators have shown that stimulation of receptors linked to $G{\alpha}-PLC$ pathway inhibits the activity of G proteincoupled inwardly rectifying $K^+$ (GIRK) channel. In the present study, we sought to determine whether ginsenosides influenced the activity of GIRK 1 and GIRK 4 (GIRK 1/4) channels expressed in the Xenopus oocyte, and if so, the underlying signal transduction mechanism. In oocyte injected with GIRK 1/4 channel cRNAs, bath-applied ginsenosides inhibited high potassium (HK) solution-elicited GIRK current $(EC_{50}:4.9{\pm}4.3\;{\mu}g/ml).$ Pretreatment of the oocyte with PTX reduced the HK solution-elicited GIRK current by $49\%,$ but it did not alter the inhibitory ginsenoside effect on GIRK current. Prior intraoocyte injection of cRNA(s) coding $G{\alpha}_q,\;G{\alpha}_{11}\;or\;G{\alpha}_q/G{\alpha}_{11},\;but\;not\;G{\alpha}_{i2}\;or\;G{\alpha}_{oA}$ attenuated the inhibitory ginsenoside effect. Injection of cRNAs coding $G{\beta}_{1{\gamma}2}$ also attenuated the ginsenoside effect. Similarly, injection of the cRNAs coding regulators of G protein signaling 1, 2 and 4 (RGS1, RGS2 and RGS4), which interact with $G{\alpha}_i\;and/or\;G{\alpha}_{q/11}$ and stimulates the hydrolysis of GTP to GDP in active GTP-bound $G{\alpha}$ subunit, resulted in a significant reduction of ginsenoside effect on GIRK current. Preincubation of GIRK channel-expressing oocyte in PLC inhibitor (U73122) or protein kinase C (PKC) inhibitor (staurosporine or chelerythrine) blocked the inhibitory ginsenoside effect on GIRK current. On the other hand, intraoocyte injection of BAPTA, a free $Ca^{2+}$ chelator, had no significant effect on the ginsenoside action. Taken together, these results suggest that ginsenosides inhibit the activity of GIRK 1/4 channel expressed in the Xenopus oocyte through a PTX-insensitive and $G{\alpha}_{q/11}$-,PLC-and PKC-mediated signal transduction pathway.

  • PDF

Diagnosis and Prognosis of Sepsis (패혈증의 진단 및 예후예측)

  • Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.4
    • /
    • pp.309-316
    • /
    • 2021
  • Sepsis is a physiological response to a source of infection that triggers mechanisms that compromise organ function, leading to death if not treated early. Biomarkers with high sensitivity, specificity, speed, and accuracy that could differentiate sepsis from non-infectious systemic inflammatory response syndrome (SIRS) could bring about a revolution in sepsis treatment. Given the limitations and time required for microbial verification of pathogens, the accurate diagnosis of infection before employing antibiotic therapy is important and clinically necessary. Procalcitonin (PCT), lactate, C-reactive protein (CRP), cytokines, and proadrenomedullin (ProADM) are the common biomarkers used for diagnosis. The procalcitonin (PCT)-guided antibiotic treatment in patients with acute respiratory infections effectively reduces antibiotic exposure and side effects while improving survival rates. The evidence regarding sepsis screening in hospitalized patients is limited. Clinicians, researchers, and healthcare decision-makers should consider these findings and limitations when implementing screening tools, future research, or policy on sepsis recognition in hospitalized patients. The use of biomarkers in pediatric sepsis is promising, although such use should always be correlated with clinical evaluation. Biomarkers may also improve the prediction of mortality, especially in the early phase of sepsis, when the levels of certain pro-inflammatory cytokines and proteins are elevated.