DOI QR코드

DOI QR Code

Development of real-time PCR for rapid detection of Mycobacterium bovis DNA in cattle lymph nodes and differentiation of M. bovis and M. tuberculosis

소 림프절에서 Mycobacterium bovis DNA의 신속 검출과 M. bovis와 M. tuberculosis 감별을 위한 real-time PCR 개발

  • Koh, Ba-Ra-Da (Gwangju Metropolitan Health & Environment Research Institute) ;
  • Jang, Young-Boo (Bacteriology Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Ku, Bok-Kyung (Bacteriology Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Cho, Ho-Seong (College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Bae, Seong-Yeol (Gwangju Metropolitan Health & Environment Research Institute) ;
  • Na, Ho-Myung (Gwangju Metropolitan Health & Environment Research Institute) ;
  • Park, Seong-Do (Gwangju Metropolitan Health & Environment Research Institute) ;
  • Kim, Yong-Hwan (Gwangju Metropolitan Health & Environment Research Institute) ;
  • Mun, Yong-Un (Gwangju Metropolitan Health & Environment Research Institute)
  • 고바라다 (광주광역시보건환경연구원) ;
  • 장영부 (농림수산검역검사본부 동식물위생연구부 세균질병과) ;
  • 구복경 (농림수산검역검사본부 동식물위생연구부 세균질병과) ;
  • 조호성 (전북대학교 수의과대학) ;
  • 배성열 (광주광역시보건환경연구원) ;
  • 나호명 (광주광역시보건환경연구원) ;
  • 박성도 (광주광역시보건환경연구원) ;
  • 김용환 (광주광역시보건환경연구원) ;
  • 문용운 (광주광역시보건환경연구원)
  • Received : 2011.11.24
  • Accepted : 2011.12.16
  • Published : 2011.12.30

Abstract

Mycobacterium bovis, a member of the M. tuberculosis complex (MTC), is the causative agent of bovine tuberculosis. Detection of M. bovis and M. tuberculosis using conventional culture- and biochemical-based assays is time-consuming. Therefore, a simple and sensitive molecular assay for rapid detection would be of great help in specific situations such as faster diagnosis of bovine tuberculosis (bTB) infection in the abattoirs. We developed a novel multiplex real-time PCR assay which was applied directly to biological samples with evidence of bTB and it was allowed to differentiate between M. bovis and M. tuberculosis. The primers and TaqMan probes were designed to target the IS1081 gene, the multi-copy insertion element in the MTC and the 12.7-kb fragment which presents in M. tuberculosis, not in the M. bovis genome. The assay was optimized and validated by testing 10 species of mycobacteria including M. bovis and M. tuberculosis, and 10 other bacterial species such as Escherichia coli, and cattle lymph nodes (n=113). The tests identified 96.4% (27/28) as M. bovis from the MTC-positive bTB samples using conventional PCR for specific insertion elements IS1081. And MTC-negative bTB samples (n=85) were tested using conventional PCR and the real-time PCR. When comparative analyses were conducted on all bovine samples, using conventional PCR as the gold standard, the relative accuracy of real-time PCR was 99.1%, the relative specificity was 100%, and the agreement quotient (kappa) was 0.976. The detection limits of the real-time PCR assays for M. bovis and M. tuberculosis genomic DNA were 10 fg and 0.1 pg per PCR reaction, respectively. Consequently, this multiplex real-time PCR assay is a useful diagnotic tool for the identification of MTC and differentiation of M. bovis and M. tuberculosis, as well as the epidemiologic surveillance of animals slaughtered in abattoir.

Keywords

References

  1. 고바라다, 김현중, 박덕웅, 박성도, 김재익, 박종태, 김용환. 2007. PCR 기법을 이용한 도축 소의 결핵병 신속진단. 한국가축위생학회지 30: 393-406.
  2. 공신국, 이건택, 임종묵, 양승민, 이요안나, 문순화. 2002. PCR 기법을 이용한 젖소 결핵균 검색 분리 조사. 한국가축위생학회지 25: 135-140.
  3. 변현섭, 이현주, 이상명, 한성태, 곽학구, 최해연, 조윤상, 안병우. 2007. 도축 한우에서 발견된 결핵병. 한국가축위생학회지 30: 407-414.
  4. 이종진, 김덕순, 이종화, 이청산. 2010. ELISA를 이용한 우결핵검사 결과에 대한 PPD 접종법 결과 분석 비교. 한국가축위생학회지 33: 335-340.
  5. Bakshi CS, Shah DH, Verma R, Singh RK, Malik M. 2005. Rapid differentiation of Mycobacterium bovis and Mycobacterium tuberculosis based on a 12.7-kb fragment by a single tube multiplex-PCR. Vet Microbiol 109: 211-216. https://doi.org/10.1016/j.vetmic.2005.05.015
  6. Barouni AS, Augusto CJ, Lopes MT, Zanini MS, Salas CE. 2004. A pncA polymorphism to differentiate between Mycobacterium bovis and Mycobacterium tuberculosis. Mol Cell Probes 18(3): 167-170. https://doi.org/10.1016/j.mcp.2003.11.006
  7. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST. 2002. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 99: 3684-3689. https://doi.org/10.1073/pnas.052548299
  8. Chen R, Bi Y, Yang G, Liu Z, Liu Z, Zeng B, Tong T. 2010. Development of a fluorescent microsphere-based multiplex assay for simultaneous rapid detection of Mycobacterium tuberculosis complex and differentiation of M. tuberculosis and M. bovis in clinical samples. Diagn Mol Pathol 19: 172-179. https://doi.org/10.1097/PDM.0b013e3181d8c241
  9. Collins DM, Erasmuson SK, Stephens DM, Yates FG, De Lisle GW. 1993. DNA fingerprinting of Mycobacterium bovis strains by restriction fragment analysis and hybridization with insertion elements IS1081 and IS6110. J Clin Microbiol 31: 1143-1147.
  10. Collins DM, Stephens DM. 1991. Identification of an insertion sequence, IS1081, in Mycobacterium bovis. FEMS Microbiol Lett 67: 11-15.
  11. Cosivi O, Grange JM, Daborn CJ, Raviglione MC, Fujikura T, Cousins D, Robinson RA, Huchzermeyer HF, de Kantor I, Meslin FX. 1998. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg Infect Dis 4: 59-70. https://doi.org/10.3201/eid0401.980108
  12. Ereqat S, Bar-Gal GK, Nasereddin A, Azmi K, Qaddomi SE, Greenblatt CL, Spigelman M, Abdeen Z. 2010. Rapid differentiation of Mycobacterium tuberculosis and M. bovis by high-resolution melt curve analysis. J Clin Microbiol 48: 4269-4272. https://doi.org/10.1128/JCM.00943-10
  13. Espinosa de los Monteros LE, Galan JC, Gutierrez M, Samper S, Garcia Marin JF, Martin C, Dominguez L, de Rafael L, Baquero F, Gomez-Mampaso E, Blazquez J. 1998. Allele-specific PCR method based on pncA and oxyR sequences for distinguishing Mycobacterium bovis from Mycobacterium tuberculosis: intraspecific M. bovis pncA sequence polymorphism. J Clin Microbiol 36: 239-242.
  14. Fleiss JL, Cohen J. 1973. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educational and Psychological Measurement 33: 613-619. https://doi.org/10.1177/001316447303300309
  15. Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG. 2003. The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA 100: 7877-7882. https://doi.org/10.1073/pnas.1130426100
  16. Heid CA, Stevens J, Livak KJ, Williams PM. 1996. Real time quantitative PCR. Genome Res 6: 986-994. https://doi.org/10.1101/gr.6.10.986
  17. Klein D. 2002. Quantification using real-time PCR technology: applications and limitations. Trends Mol Med 8: 257-260. https://doi.org/10.1016/S1471-4914(02)02355-9
  18. Kurabachew M, Enger O, Sandaa RA, Skuce R, Bjorvatn B. 2004. A multiplex polymerase chain reaction assay for genus-, group- and species-specific detection of mycobacteria. Diagn Microbiol Infect Dis 49: 99-104. https://doi.org/10.1016/j.diagmicrobio.2004.03.010
  19. Miller MB, Tang YW. 2009. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22: 611-633. https://doi.org/10.1128/CMR.00019-09
  20. Mostowy S, Inwald J, Gordon S, Martin C, Warren R, Kremer K, Cousins D, Behr MA. 2005. Revisiting the evolution of Mycobacterium bovis. J Bacteriol 187: 6386-6395. https://doi.org/10.1128/JB.187.18.6386-6395.2005
  21. Niemann S, Harmsen D, Rusch-Gerdes S, Richter E. 2000a. Differentiation of clinical Mycobacterium tuberculosis complex isolates by gyrB DNA sequence polymorphism analysis. J Clin Microbiol 38: 3231-3234.
  22. Niemann S, Richter E, Rusch-Gerdes S. 2000b. Differentiation among members of the Mycobacterium tuberculosis complex by molecular and biochemical features: evidence for two pyrazinamide-susceptible subtypes of M. bovis. J Clin Microbiol 38: 152-157.
  23. Park H, Jang H, Song E, Chang CL, Lee M, Jeong S, Park J, Kang B, Kim C. 2005. Detection and genotyping of Mycobacterium species from clinical isolates and specimens by oligonucleotide array. J Clin Microbiol 43: 1782-1788. https://doi.org/10.1128/JCM.43.4.1782-1788.2005
  24. Parra A, Garcia N, Garcia A, Lacombe A, Moreno F, Freire F, Moran J, Hermoso de Mendoza J. 2008. Development of a molecular diagnostic test applied to experimental abattoir surveillance on bovine tuberculosis. Vet Microbiol 127: 315-324. https://doi.org/10.1016/j.vetmic.2007.09.001
  25. Pinsky BA, Banaei N. 2008. Multiplex real-time PCR assay for rapid identification of Mycobacterium tuberculosis complex members to the species level. J Clin Microbiol 46: 2241-2246. https://doi.org/10.1128/JCM.00347-08
  26. Pounder JI, Aldous WK, Woods GL. 2006. Comparison of real- time polymerase chain reaction using the Smart Cycler and the Gen-Probe amplified Mycobacterium tuberculosis direct test for detection of M. tuberculosis complex in clinical specimens. Diagn Microbiol Infect Dis 54: 217-222. https://doi.org/10.1016/j.diagmicrobio.2005.05.018
  27. Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold spring harbor laboratory press, New York.
  28. Savelkoul PH, Catsburg A, Mulder S, Oostendorp L, Schirm J, Wilke H, van der Zanden AG, Noordhoek GT. 2006. Detection of Mycobacterium tuberculosis complex with Real Time PCR: comparison of different primer-probe sets based on the IS6110 element. J Microbiol Methods 66: 177-180. https://doi.org/10.1016/j.mimet.2005.12.003
  29. Shah DH, Verma R, Bakshi CS, Singh RK. 2002. A multiplex- PCR for the differentiation of Mycobacterium bovis and Mycobacterium tuberculosis. FEMS Microbiol Lett 214: 39-43. https://doi.org/10.1111/j.1574-6968.2002.tb11322.x
  30. Soini H, Musser JM. 2001. Molecular diagnosis of mycobacteria. Clin Chem 47: 809-814.
  31. Sorlozano A, Soria I, Roman J, Huertas P, Soto MJ, Piedrola G, Gutierrez J. 2009. Comparative evaluation of three culture methods for the isolation of mycobacteria from clinical samples. J Microbiol Biotechnol 19: 1259-1264.
  32. Taylor GM, Worth DR, Palmer S, Jahans K, Hewinson RG. 2007. Rapid detection of Mycobacterium bovis DNA in cattle lymph nodes with visible lesions using PCR. BMC Vet Res 3: 12. https://doi.org/10.1186/1746-6148-3-12
  33. Thacker TC, Harris B, Palmer MV, Waters WR. 2011. Improved specificity for detection of Mycobacterium bovis in fresh tissues using IS6110 real-time PCR. BMC Vet Res 7: 50. https://doi.org/10.1186/1746-6148-7-50
  34. Thierry D, Cave MD, Eisenach KD, Crawford JT, Bates JH, Gicquel B, Guesdon JL. 1990. IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res 18: 188. https://doi.org/10.1093/nar/18.1.188
  35. Thoen C, Lobue P, de Kantor I. 2006. The importance of Mycobacterium bovis as a zoonosis. Vet Microbiol 112: 339-345. https://doi.org/10.1016/j.vetmic.2005.11.047
  36. Thone CO, Chiodini R. 1993. Mycobacterium. pp. 44-56. In: Gyles CL, Thone CO(ed.). Pathogenesis of bacterial infectious in animals. 2nd ed. Iowa State University Press, Ames, Iowa.
  37. van Soolingen D, Hermans PW, de Haas PEW, van Embden JDA. 1992. Insertion element IS1081-associated restricon fragment length polymorphisms in Mycobacterium tuberculosis complex species: a reliable tool for recognizing Mycobacterium bovis BCG. J Clin Microbiol 30: 1772-1777.
  38. Wards BJ, Collins DM, de Lisle GW. 1995. Detection of Mycobacterium bovis in tissues by polymerase chain reaction. Vet Microbiol 43: 227-240. https://doi.org/10.1016/0378-1135(94)00096-F
  39. Yeboah-Manu D, Yates MD, Wilson SM. 2001. Application of a simple multiplex PCR to aid in routine work of the mycobacterium reference laboratory. J Clin Microbiol 39: 4166-4168. https://doi.org/10.1128/JCM.39.11.4166-4168.2001
  40. Zhu RY, Zhang KX, Zhao MQ, Liu YH, Xu YY, Ju CM, Li B, Chen JD. 2009. Use of visual loop-mediated isotheral amplification of rimM sequence for rapid detection of Mycobacterium tuberculosis and Mycobacterium bovis. J Microbiol Methods 78: 339-343. https://doi.org/10.1016/j.mimet.2009.07.006
  41. Zumarraga M, Bigi F, Alito A, Romano MI, Cataldi A. 1999. A 12.7 kb fragment of the Mycobacterium tuberculosis genome is not present in Mycobacterium bovis. Microbiology 145(Pt 4): 893-897. https://doi.org/10.1099/13500872-145-4-893

Cited by

  1. Loop-mediated isothermal amplification assay for differentiation of Mycobacterium bovis and M. tuberculosis vol.36, pp.2, 2013, https://doi.org/10.7853/kjvs.2013.36.2.79