Human Immunodeficiency Virus-l Tat Positively Regulates the Human CD99 Gene via DNA Demethylation

Human Immunodeficiency Virus-1 Tat 단백에 의한 인간 CD99유전자의 조절기전에 대한 연구

  • Lee, Eu-Gene (Department of Biological Sciences, Konkuk University) ;
  • Kim, Ye-Ri (Department of Biological Sciences, Konkuk University) ;
  • Lee, Mi-Kyung (Department of Biological Sciences, Konkuk University) ;
  • Lee, Im-Soon (Department of Biological Sciences, Konkuk University)
  • 이유진 (건국대학교 이과대학 생명과학과) ;
  • 김예리 (건국대학교 이과대학 생명과학과) ;
  • 이미경 (건국대학교 이과대학 생명과학과) ;
  • 이임순 (건국대학교 이과대학 생명과학과)
  • Published : 2008.12.31

Abstract

HIV affects many organ systems. Patients with HIV infection have substantially increased risk of developing various cancers, primarily by opportunistic infection with oncogenic viruses due to their immunocompromised status. However, extensive evidence also indicates that the viral protein, Tat itself, may playas a major factor in the development of AIDS-related neoplasms. The molecular mechanism underlying Tat's oncogenic activity may include deregulation of cellular genes. Therefore, in this study, we examined the effect of HIV-l Tat on CD99 as one of the target cellular genes, which is a well-known tumor marker in several cancers. By using established HeLa clones that are stably expressing Tat, we found that CD99 is upregulated by endogenous Tat, whereas STAT3 is down regulated. Upon the screening of genes differentially expressed between Tat-stable cells and the control cells by using the gene fishing technique, DEG, we detected 3 genes which expression is affected by the presence of Tat. Furthermore, the methylation specific PCR analysis of the stably Tat expressing cell lines revealed that the CD99 promoter is de methylated in the presence of Tat. Taken together, these results open a potential role of CD99 in AIDS-related oncogenesis via epigenetic regulation by HIV-1 Tat.

HIV에 감염된 환자의 경우 다양한 종류의 암이 발생하는 것으로 알려져 있다. 이러한 암종의 높은 발생률의 원인으로, 감염에 의한 면역세포의 감소 및 결핍과 같은 간접적인 이유 뿐 아니라, HIV 바이러스 단백질의 발현이 직접적으로 병의 발생에 관여한다는 보고가 있다. 본 연구에서는 HIV 환자에서 높게 나타나는 암의 발생에 대한 기전을 이해하기 위하여 HIV-1 Tat 유전자와, 다수의 암 발생과 관련이 있는 세포막단백 CD99와의 관계를 규명하였다. 먼저 CD99의 발현에 미치는 Tat의 영향을 알아보기 위하여 HIV-1 Tat 발현 안정화 세포주를 확립하고 Tat 단백에 의한 CD99 유전자의 발현 양상 변화를 분석하였다. 실험결과 Tat의 발현에 의하여 CD99 유전자의 발현이 활성화되는 것이 관찰되었으며 이와 반대로 STAT3의 발현은 낮아졌다. CD99 프로모터는 CpG 함량이 높기 때문에 Tat 단백이 DNA 메칠화를 통해서 CD99 유전자의 발현을 조절하는지 확인하기 위하여 methylation specific PCR을 수행하였고 Tat의 발현이 높은 곳에서 특이적으로 CD99 프로모터 부위가 탈메칠화되는 것을 발견하였다. Tat 발현 세포에서만 특이적인 발현 차이를 보이는 유전자 분석을 위한 Differentially Expressed Gene keratin 17과 collagen, type IV 증가됨이 확인되었다. 위의 결과는 HIV Tat 단백이 직접 세포 단백들을 조절하여 암을 발생시킬 수 있다는 보고를 뒷받침한다.

Keywords

References

  1. Aboulafia, D.M., M. Meneses, S. Ginsberg, M.S. Siegel, W.W. Howard, and B.J. Dezube. 2000. Acute myeloid leukemia in patients infected with HIV-1. AIDS 16, 865-876 https://doi.org/10.1097/00002030-200204120-00006
  2. Blazquez, M.V., A. Macho, C. Ortiz, C. Lucena, M. Lopez-Cabrera, F. Sanchez-Madrid, and E. Munoz. 1999. Extracellular HIV type 1 Tat protein induces CD69 expression through NF-kB activation : Possible correlation with cell surface Tat-binding proteins. AIDS Res. Hum. Retrov. 15, 1209-1218 https://doi.org/10.1089/088922299310304
  3. Corallini, A., R. Sampaolesi, L. Possati, M. Merlin, P. Bagnarelli, C. Piola, M. Fabris, M.A. Menegatti, S. Talevi, D. Gibellini, R. Rocchetti, A. Caputo, and G. Barbanti-Brodano. 2002. Inhibition of HIV-1 Tat activity correlates with down-regulation of bcl-2 and results in reduction of angiogenesis and oncogenicity. Virology 299, 1-7 https://doi.org/10.1006/viro.2002.1459
  4. Emerman, M., H. Micheal, and M. Malim. 1998. HIV-1 regulatory/ accessory genes : Keys to unraveling viral and host cell biology. Science 280, 1880-1884 https://doi.org/10.1126/science.280.5371.1880
  5. Ensoli, B., L. Buonaguro, G. Barillari, V. Fiorelli, R. Gendelman, R.A. Morgan, P. Wingfield, and R.C. Gallo. 1993. Release, uptake, and effects of extracellular Human Immunodeficiency Virus type I Tat protein on cell growth and viral transactivation. J. Virol. 67, 277-287
  6. Evans, T.J., M.G. Jacquemin, and P.J. Farrell. 1995. Efficient EBV superinfection of group 1 Burkitt's lymphoma cells distinguishes requirements for expression of the Cp viral promoter and can activate the EBV productive cycle. Virology 206, 866-877 https://doi.org/10.1006/viro.1995.1009
  7. Farrell, P.J., I. Cludts, and A. Stuhler. 1997. Epstein-Barr virus genes and cancer cells. Biomed. Pharmacother. 51, 58-67 https://doi.org/10.1016/S0753-3322(97)87727-X
  8. Fittipaldi, A. and M. Giacca. 2005. Transcellular protein transduction using the Tat protein of HIV-1. Adv. Drug Deliver. Rev. 57, 597-608 https://doi.org/10.1016/j.addr.2004.10.011
  9. Goedert, J.J., T.R. Cote, P. Virgo, S.M. Scoppa, D.W. Kingma, M.H. Gail, E.S. Jaffe, and R.J. Biggar. 1998. Spectrum of AIDSassociated malignant disorders. Lancet 351, 1833-1839 https://doi.org/10.1016/S0140-6736(97)09028-4
  10. Huynh, D., E. Vincan, T. Mantamadiotis, D. Purcell, C.K. Chan, and R. Ramsay. 2007. Oncogenic properties of HIV-Tat in colorectal cancer cells. Curr. HIV Res. 5, 403-409 https://doi.org/10.2174/157016207781023974
  11. Kadin, M.E. 1994. Pathology of Hodgkin's disease. Curr. Opin. Oncol. 6, 456-463 https://doi.org/10.1097/00001622-199409000-00002
  12. Lee, M.K., S.H. Park, and I.S. Lee. 2008. DNA methylation dependent regulation of human CD99 expression in HRS cells of Hodgkin's lymphoma. Korean J. Genetic 30, 73-82
  13. Marlo, A. and J.G. Herman. 1995. CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/ CDKN2/MTS1 in human cancers. Nat. Med. 1, 686-692 https://doi.org/10.1038/nm0795-686
  14. McArthur, C.P., Y. Wang, D. Heruth, and S. Gustafson. 2001. Amplification of extracellular matrix and oncogenes in tat-transfected human salivary gland cell lines with expression of laminin, fibronectin, collagens I, III, IV, c-myc and p53. Arch. Oral Biol. 46, 545-555 https://doi.org/10.1016/S0003-9969(01)00014-0
  15. Brierley, M.M., N. Eleanor, and A. Fish. 2005. STATs : Multifaceted regulators of transcription. J. Interf. Cytok. Res. 25, 733-744 https://doi.org/10.1089/jir.2005.25.733
  16. Robert, M.F., S. Morin, N. Beaulieu, F. Gauthier, I.C. Chute, A. Barsalou, and A.R. MacLeod. 2002. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat. Genet. 33, 61-65 https://doi.org/10.1038/ng1068
  17. Serraino, D., P. Pezzotti, M. Dorrucci, M.B. Alliegro, A. Sinicco, and G. Rezza. 1997. Cancer incidence in a cohort of HIV seroconverters. HIV Italian Seroconversion Study Group. Cancer 79, 1004-1008 https://doi.org/10.1002/(SICI)1097-0142(19970301)79:5<1004::AID-CNCR17>3.0.CO;2-5
  18. Sohn, H.W., E.Y. Choi, S.H. Kim, I.S. Lee, D.H. Chung, U.A. Sung, D.H. Hwang, S.S. Cho, B.H. Jun, J.J. Jang, J.G. Chi, and S.H. Park. 2001. CD99 regulates the transport of MHC class I molecules from the golgi complex to the cell surface. J. Immunol. 166, 787-794 https://doi.org/10.4049/jimmunol.166.2.787
  19. Verhoef, K., M. Tijms, and B. Berkhout. 1997. Optimal Tat-mediated activation of the HIV-1 LTR promoter requires a full-length TAR RNA hairpin. Nucleic Acids Res. 25, 496-502 https://doi.org/10.1093/nar/25.3.496
  20. Zhang, Q., H.Y. Wang, A. Woetmann, P.N. Raghunath, N. Odum, and M.A. Wasik. 2006. STAT3 induces transcription of DNA methyltransferase 1 (DNMT1) gene in malignant T-lymphocytes. Blood 108, 1058-1064 https://doi.org/10.1182/blood-2005-08-007377