• Title/Summary/Keyword: molecular beam epitaxy(MBE)

Search Result 183, Processing Time 0.036 seconds

Ni/GaN Schottky 장벽 다이오드에서 Ga 분자선량변화에 따른 결함 준위 연구

  • O, Jeong-Eun;Park, Byeong-Gwon;Lee, Sang-Tae;Jeon, Seung-Gi;Kim, Mun-Deok;Kim, Song-Gang;U, Yong-Deuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.460-460
    • /
    • 2013
  • 본 연구는 Si (111) 기판위에 Ga 분자선량을 변화시켜 GaN 박막을 molecular beam epitaxy 법으로 성장하고, Schottky 장벽 다이오드를 제작한 후에 deep level transient spectroscopy (DLTS) 법을 통하여 깊은 준위 결함에 대하여 조사하였다. 성장 시 Ga 분자선량은, 그리고 Torr로 달리하여 V/III 비율을 변화시켰고, Schottky 장벽 다이오드 제작을 위하여 e-beam evaporator를 사용하여 metal을 증착하였다. Schottky 접촉에는 Ni (20 nm)/Au (100 nm)를 증착하였고, ohmic 접촉에는 Ti (20 nm)/Au (100 nm)를 증착하고 I-V, C-V 그리고 DLTS를 측정하였다. DLTS 신호를 통해 GaN 박막 성장 과정에서 형성되는 깊은 결함의 종류를 확인하였으며, 열처리 등의 처리 및 측정 조건변화에 따른 결함의 거동과 종류 및 원인에 대하여 분석 설명하였다.

  • PDF

Crytallization Behavior of Amorphous ${Si_{1-x}}{Ge_x)$ Films Deposited on $SiO_2$ by Molecular Beam Epitaxy(MBE) ($SiO_2$위에 MBE(Moleculat Beam Epitaxy)로 증착한 비정질 ${Si_{1-x}}{Ge_x)$박막의 결정화거동)

  • Hwang, Jang-Won;Hwang, Jang-Won;Kim, Jin-Won;Kim, Gi-Beom;Lee, Seung-Chang;Kim, Chang-Su
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.895-905
    • /
    • 1994
  • The solid phase crystallization behavior of undoped amorphous $Si_{1-x}Ge_{x}$ (X=O to 0.53) alloyfilms was studied by X-ray diffractometry(XRD) and transmission electron microscopy(TEM). Thefilms were deposited on thermally oxidized 5" (100) Si wafer by MBE(Mo1ecular Beam Epitaxy) at 300'C and annealed in the temperature range of $500^{\circ}C$ ~ $625^{\circ}C$. From XRD results, it was found that the thermal budget for full crystallization of the film is significantly reduced as the Ge concentration in thefilm is increased. In addition, the results also shows that pure amorphous Si film crystallizes with astrong (111) texture while the $Si_{1-x}Ge_{x}$ alloy film crystallzes with a (311) texture suggesting that the solidphase crystallization mechanism is changed by the incorporation of Ge. TEM analysis of the crystallized filmshow that the grain morphology of the pure Si is an elliptical and/or a dendrite shape with high density ofcrystalline defects in the grains while that of the $Si_{0.47}Ge_{0.53}$ alloy is more or less equiaxed shape with muchlower density of defects. From these results, we conclude that the crystallization mechanism changes fromtwin-assisted growth mode to random growth mode as the Ge cocentration is increased.ocentration is increased.

  • PDF

Growth and characterization of molecular beam epitaxy grown GaN thin films using single source precursor with ammonia

  • Chandrasekar, P.V.;Lim, Hyun-Chul;Chang, Dong-Mi;Ahn, Se-Yong;Kim, Chang-Gyoun;Kim, Do-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.174-174
    • /
    • 2010
  • Gallium Nitride(GaN) attracts great attention due to their wide band gap energy (3.4eV), high thermal stability to the solid state lighting devices like LED, Laser diode, UV photo detector, spintronic devices, solar cells, sensors etc. Recently, researchers are interested in synthesis of polycrystalline and amorphous GaN which has also attracted towards optoelectronic device applications significantly. One of the alternatives to deposit GaN at low temperature is to use Single Source Molecular Percursor (SSP) which provides preformed Ga-N bonding. Moreover, our group succeeds in hybridization of SSP synthesized GaN with Single wall carbon nanotube which could be applicable in field emitting devices, hybrid LEDs and sensors. In this work, the GaN thin films were deposited on c-axis oriented sapphire substrate by MBE (Molecular Beam Epitaxy) using novel single source precursor of dimethyl gallium azido-tert-butylamine($Me_2Ga(N_3)NH_2C(CH_3)_3$) with additional source of ammonia. The surface morphology, structural and optical properties of GaN thin films were analyzed for the deposition in the temperature range of $600^{\circ}C$ to $750^{\circ}C$. Electrical properties of deposited thin films were carried out by four point probe technique and home made Hall effect measurement. The effect of ammonia on the crystallinity, microstructure and optical properties of as-deposited thin films are discussed briefly. The crystalline quality of GaN thin film was improved with substrate temperature as indicated by XRD rocking curve measurement. Photoluminescence measurement shows broad emission around 350nm-650nm which could be related to impurities or defects.

  • PDF

Growth and characterization of GaAs and AlGaAs with MBE growth temperature (MBE 성장온도에 따른 GaAs 및 AlGaAs의 전기광학적 특성)

  • Seung Woong Lee;Hoon Young Cho;Eun Kyu Kim;Suk-Ki Min;Jung Ho Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 1994
  • GaAs and AlGaAs epi-layers were grown on semi-insulating (100) GaAs substrate by molecular beam epitaxy (MBE) and their electrical and optical properties have been investigated by several measurements. In undoped GaAs, the p-type GaAs layers with the good surface morphology were obtained under the growth conditions of the substrate temperatures ranging from 570 to $585^{\circ}C$ and the $As_4$/Ga ratios from 17 to 22. In the samples with the growth rates of the ranges of $0.9~1.1 {\mu}m/h$, the impurity concentrations were in the ranges of $1.5{\times}10^{14}~5.6{\times}10^{14}cm^{-3}$ with the Hall mobilities of $590~410cm^2/V-s$. In the Si-doped GaAs, the n-type GaAs layers with low electro trap, only two hole deep levels were observed with uniform doping profiles (<1%). AlGaAs layers with good surface morphology and crystallinity were grown under an optimum condition of the substrate temperature, $600^{\circ}C $. 8 deep level defects were observed between 0.17~0.85eV in undoped AlGaAs layers.

  • PDF

Atomic Arrangement of Ordered Phase in $GaAs_{0.5}Sb_{0.5}$ Epilayer ($GaAs_{0.5}Sb_{0.5}$ 에피층의 규칙상의 원자 배열)

  • Ihm, Yeong-Eon
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.678-683
    • /
    • 1993
  • Atomic arral1gement of ordered phase in $GaAs_{0.5}Sb_{0.5}$ epilayer was studied by observation of selected area diffraction patterns and high resolution images. The epilayer was grown on untilted (001) GaAs substrate at $580^{\circ}C$ by molecular beam epitaxy(MBE). A 1/2(111) type long-range ordered phase is formed in the epilayer. Atomic arrangement of the ordered phase is described as an alternative stacking of As-rich and Sb-rich {111} planes in group V sublattice. Space group of the ordred structure belongs to R3m, and unit cell of the ordered structure is rhombohedral.

  • PDF

MBE 법으로 선택적 성장된 GaN 나노선의 광/구조 특성 조사

  • Lee, Sang-Tae;Jeon, Seung-Gi;Choe, Hyo-Seok;Kim, Mun-Deok;O, Jae-Eung;Kim, Song-Gang;Yang, U-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.355-355
    • /
    • 2012
  • Si (111) 기판 위에 polystyrene (PS) bead를 사용하여 만들어진 약 100 nm 나노 구멍에 GaN나노선을 molecular beam epitaxy 법으로 성장하였다. 성장 온도와 III/V 비율 변화에 대하여 성장된 GaN 나노선의 모양과 광학적 특성은 scanning electron microscopy (SEM)와 photoluminescence (PL) 등으로 조사하였으며, InN/GaN 이종접합 및 InGaN p-n 다이오드구조를 성장하여 atomic force microscopy의 tip 접촉방법으로 전기적 특성을 조사하였다. PL 측정 결과 성장온도가 높아지면 Ga 빈자리와 관계된 3.28 eV의 donor acceptor pair (DAP) 신호와 3.42 eV의 stacking faults (SF) 결함에 기인된 발광 신호세기가 감소하는 결과를 SEM으로부터 나노선 폭 및 길이는 좁아지면서 짧아지는 것을 관측하였다. 또한 nitrogen 원자양이 증가하면서 Ga 빈자리와 관련된 3.28 eV DAP 신호가 증가하는 것을 관측하였다. 이들 결과로부터 GaN 나노선의 SF 발광 신호관련 원인에 대하여 논의 하였다. AFM을 이용한 I-V 측정으로부터 성장조건 변화에 따른 GaN 나노선 및 p-n 접합 나노선의 전도 특성을 조사하여 나노선의 소자 응용에 대한 기본적인 물리특성을 규명하였다.

  • PDF

Microstructures and electron mobilities of $Si/Si_{1-x}Ge_x$ MODFET structures grown by gas-source MBE (가스원 분자선 에피택시 증착법에 의한 $Si/Si_{1-x}Ge_x$ MODFET 구조의 미세조직과 전기이동도에 관한 연구)

  • 이원재
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.207-211
    • /
    • 1999
  • $Si/Si_{1-x}Ge_x$ MODFET structures, incorporating linearly-graded buffer layers have been grown by GaS Source Molecular Beam Epitaxy. The growth temperature of the graded layers has not significantly changed the distribution of misfit dislocation. However, the surface undulation and surface defects were increased with increasing growth temperature. In $Si/Si_{1-x}Ge_x$ MODFET structures, the densities of misfit dislocations near the Si-active layers were considerably reduced in comparison with the region of graded layers. The electron mobility of $Si/Si_{1-x}Ge_x$ MODFET structure has increased with lowering the growth temperature.

  • PDF

Characterization of GaN and InN Nucleation Layers by Reflection High Energy Electron Diffraction (RHEED에 의한 GaN, InN 핵생성층의 열처리 효과 분석)

  • Na, Hyunseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.3
    • /
    • pp.124-131
    • /
    • 2016
  • GaN and InN epilayers with nucleation layer (LT-buffer) were grown on (0001) sapphire substrates by radio-frequency plasma-assisted molecular beam epitaxy (RF-MBE). As-grown and annealed GaN and InN nucleation layers grown at various growth condition were observed by reflection high-energy electron diffraction (RHEED). When temperature of effusion cell for III source was very low, diffraction pattern with cubic symmetry was observed and zincblende nucleation layer was flattened easily by annealing. As cell temperature increased, LT-GaN and LT-InN showed typical diffraction pattern from wurtzite structure, and FWHM of (10-12) plane decreased remarkably which means much improved crystalline quality. Diffraction pattern was changed to be from streaky to spotty when plasma power was raised from 160 to 220 W because higher plasma power makes more nitrogen adatoms on the surface and suppressed surface mobility of III species. Therefore, though wurtzite nucleation layer was a little hard to be flattened compared to zincblende, higher cell temperature led to easier movement of III surface adatoms and resulted in better crystalline quality of GaN and InN epilayers.

Characteristics of Circular β-Ga2O3 MOSFETs with High Breakdown Voltage (>1,000 V) (높은 항복전압(>1,000 V)을 가지는 Circular β-Ga2O3 MOSFETs의 특성)

  • Cho, Kyu Jun;Mun, Jae-Kyong;Chang, Woojin;Jung, Hyun-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.78-82
    • /
    • 2020
  • In this study, MOSFETs fabricated on Si-doped, MBE-grown β-Ga2O3 are demonstrated. A Si-doped Ga2O3 epitaxial layer was grown on a Fe-doped, semi-insulating 1.5 cm × 1 cm Ga2O3 substrate using molecular beam epitaxy (MBE). The fabricated devices are circular type MOSFETs with a gate length of 3 ㎛, a source-drain spacing of 20 ㎛, and a gate width of 523 ㎛. The device exhibited a good pinch-off characteristic, a high on-off drain current ratio of approximately 2.7×109, and a high breakdown voltage of 1,080 V, which demonstrates the potential of Ga2O3 for power device applications including electric vehicles, railways, and renewable energy.

A study on characteristics of ZnSe epilayer by using surface photovoltage (표면 광전압을 이용한 ZnSe 에피층의 특성 연구)

  • 최상수;정명랑;김주현;배인호;박성배
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.350-355
    • /
    • 2001
  • We have investigated characteristics of ZnSe epilayer grown by molecular beam epitaxy(MBE) on semi-insulating(SI) GaAs by using surface photovoltage(SPV). The measurements of SPV were performed with illumination intensity and modulation frequency. The bandgap energy of ZnSe epilayer was determined from derivative surface photovoltage (DSPV). The five states were observed at room temperature(RT), and those states relate to the impurity and defect formed hetero-interface of ZnSe and GaAs during the sample growth. The observed states represented as a tendency of typical extrinsic transition on the increasing illumination intensity. The 1s and 2s signals related to the excitonic absorption were not observed at RT, but those were presented with the splitted of two peaks in the SPV at 80 K. From the modulation frequency dependence, we obtained the junction conductance and capacitance of the sample.

  • PDF