• Title/Summary/Keyword: mold design

Search Result 1,191, Processing Time 0.028 seconds

Experimental Study of Machining Process of Polymer Mold for Fabrication of Three-Dimensional Hydrogel Scaffold (3 차원 하이드로젤 지지체 제작을 위한 고분자 몰드의 가공 특성에 대한 실험적 연구)

  • Lee, Pil-Ho;Lee, Sang Won;Kim, Daehoon;Kim, Si Hyeon;Sung, Jong Hwan;Chung, Haseung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.669-674
    • /
    • 2013
  • A three-dimensional hydrogel scaffold has been proposed for the effective production of biomimetic intestinal villi to reduce ethical and cost problems caused by animal testing in pharmaceutical development. This study explores an experimental approach to develop a new technique based on laser machining and microdrilling processes to produce a plastic mold for the fabrication of a three-dimensional hydrogel scaffold. For process optimization, both the laser machining and the microdrilling experiments are conducted by varying the experimental conditions, and structural characterization of the mold and intestinal villi were performed using SEM (scanning electron microscope) and OM (optical microscope) images. Polycarbonate (PC) was used as a candidate material. The experimental results show that intestinal villi can be fabricated by both laser and microdrilling machining processes.

Development of a High-throughput Micronanopatterning System Based on the Plastic Deformation Driven by Continuous Rigid Mold Edge Inscribing on Flexible Substrates (마이크로나노그레이팅 경질 몰드 모서리의 연속적 각인 소성가공 기반 유연 마이크로나노패턴의 고속 연속 제작 공정시스템 개발)

  • Lee, Seungjo;Oh, Dong Kyo;Park, Jaekyu;Kim, Jeong Dae;Lee, Jae Hyuk;Ok, Jong G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.368-372
    • /
    • 2016
  • In this study, we develop a novel high-throughput micronanopatterning system that can implement continuous mechanical pattern inscribing on flexible substrates using a rigid grating mold edge. We perform a conceptual design of the process principle, specific modeling, and buildup of a real system prototype. This research also carefully addresses several important issues related to processing and controlling, including precision motion, alignment, heating, and sensing to enable a successful micronanopatterning in a continuous and high-speed fashion. Various micronanopatterns with the desired profiles can be created by tuning the mold shape, temperature, force, and substrate material toward many potential applications involving electronics, photonics, displays, light sources, and sensors, which typically require a large-area and flexible configurations.

A Study on the Deformation Behavior of Material by V-Ring in Fine Blanking Process (파인블랭킹 공정에서 V-링에 의한 재료의 변형 거동에 관한 연구)

  • Lee, Chun-Kyu;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.46-50
    • /
    • 2017
  • Press processing is one of the best machining methods capable of mass production, satisfying dimensional, shape and quality among the methods of processing a metal plate. Among them, Fine blanking is a method of obtaining a precise cross-section such as machining of the shear surface shape. In this research, Using SCP-1 and SHP-1 materials. The deformation behaviors of the material flow affecting the die height of the shear section in accordance with the position of the V-ring in the Fine blanking were compared and analyzed. Result of interpretation, It was confirmed that the force acts on the position where the material flow direction accurately forms the die roll that the material of SCP-1 is at a position of 1.5 mm and the material of SHP-1 is at 2.0 mm. As a result, it was confirmed that the state of fo1111ing the shear surface by the V-ring was excellent. Using analysis results, In the experiment, the height of the die roll was considered by applying The position of the V-ring was 1.5 mm in SCP-1 and 2.0 mm in SHP-1. As a result of comparing the height of the die rolls, the height values of the die rolls were different from each other, It has been considered that the tendency of the die rolls to coincide with each other. It is considered that the difference of the die roll height is caused by the pressure input of the V-ring. In this study, the deformation behavior of the material(In addition to the position of the V-ring, the flow direction of the material depends on the shape of the V-ring and the Indentation amount) is considered to be an important factor in determining die roll height.

A Study on the Case of 'Plaster Mold Casting' using 3D Printer - Focused on Ceramic Craft for Use (3D 프린터를 이용한 '석고 몰드 캐스팅' 사례에 관한 연구 - 실용도자공예를 중심으로)

  • Bang, Chang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.141-149
    • /
    • 2021
  • 3D printers, which emerged in the late 20th century, have become a key part of the fourth industrial revolution in the 21st century. Although 3D printers, the key equipment of the maker movement and the starting point of the new cottage industry in the 21st century, still reveal the limitations of mass production with low output speed and limited filament materials, the use of 3D printers by ceramic craftsmen has recently increased exponentially. However, as part of a way to overcome the discord between craftsmanship and the new technology, which has been repeated over and over in the past in craft history, the study focused on the 'plaster mold casting' technique using 3D printers. Therefore, after analyzing casting techniques of Tony Hansen, Webe van Gansbeck, Jade Crompton, and Ryu Hee-do, the potters who actively developed gypsum techniques in the world's ceramic crafts field and applied them to their own designs, I tried to find the point of convergence between 3D printers and ceramic crafts by presenting examples of effective 3D modeling methods and optimal slip casting methods using 3D printers.

Study of injection molded pattern transferability of double-sided micro-patterned automotive thick light guides (양면 마이크로 패턴 차량용 후육 라이트 가이드의 사출성형 패턴 전사성에 관한 연구)

  • Dong-won Lee;Sang-Yoon Kim;Ji-Woo Kim;Jong-Su Kim;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.42-51
    • /
    • 2023
  • In this study, we investigated the injection molding technology of thick-walled light guides, which are parts that control the light source of automotive lamps. Through injection molding analysis, the gate position that can minimize product shrinkage and deformation was selected, and a mold reflecting the analysis results was manufactured to evaluate the effect of injection speed and holding pressure on transferability during micro-pattern molding through experiments. When designing an injection mold for products with varying thicknesses, it was found that installing the gate on the side of the thicker part was advantageous for reducing volume shrinkage and deformation. It was found that the effect of shrinkage due to thickness may be greater than the position of the gate on pattern transferability. The pattern transfer error decreased as the injection speed and holding pressure increased, and it was found that increasing the injection speed was relatively effective.

Manufacturing Techniques of Bronze Medium Mortars(Jungwangu, 中碗口) in Joseon Dynasty (조선시대 중완구의 제작 기술)

  • Huh, Ilkwon;Kim, Haesol
    • Conservation Science in Museum
    • /
    • v.26
    • /
    • pp.161-182
    • /
    • 2021
  • A jungwangu, a type of medium-sized mortar, is a firearm with a barrel and a bowl-shaped projectileloading component. A bigyeokjincheonroe (bombshell) or a danseok (stone ball) could be used as a projectile. According to the Hwaposik eonhae (Korean Translation of the Method of Production and Use of Artillery, 1635) by Yi Seo, mortars were classified into four types according to its size: large, medium, small, or extra-small. A total of three mortars from the Joseon period have survived, including one large mortar (Treasure No. 857) and two medium versions (Treasure Nos. 858 and 859). In this study, the production method for medium mortars was investigated based on scientific analysis of the two extant medium mortars, respectively housed in the Jinju National Museum (Treasure No. 858) and the Korea Naval Academy Museum (Treasure No. 859). Since only two medium mortars remain in Korea, detailed specifications were compared between them based on precise 3D scanning information of the items, and the measurements were compared with the figures in relevant records from the period. According to the investigation, the two mortars showed only a minute difference in overall size but their weight differed by 5,507 grams. In particular, the location of the wick hole and the length of the handle were distinct. The extant medium mortars are highly similar to the specifications listed in the Hwaposik eonhae. The composition of the medium mortars was analyzed and compared with other bronze gunpowder weapons. The surface composition analysis showed that the medium mortars were made of a ternary alloy of Cu-Sn-Pb with average respective proportions of (wt%) 85.24, 10.16, and 2.98. The material composition of the medium mortars was very similar to the average composition of the small gun from the Joseon period analyzed in previous research. It also showed a similarity with that of bronze gun-metal from medieval Europe. The casting technique was investigated based on a casting defect on the surface and the CT image. Judging by the mold line on the side, it appears that they were made in a piece-mold wherein the mold was halved and using a vertical design with molten metal poured through the end of the chamber and the muzzle was at the bottom. Chaplets, an auxiliary device that fixed the mold and the core to the barrel wall, were identified, which may have been applied to maintain the uniformity of the barrel wall. While the two medium mortars (Treasure Nos. 858 and 859) are highly similar to each other in appearance, considering the difference in the arrangement of the chaplets between the two items it is likely that a different mold design was used for each item.

A study on the Data Operating System for Mold components Standardization (금형 부품 표준화를 위한 데이타 운용 체계에 관한 연구)

  • 이상준;김태수;정태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.228-234
    • /
    • 1991
  • 오늘날, 플라스틱 사출성형용 금형(Injection Molding)산업은 플라스틱의 수요가 급증함과 아울러 매년 20∼30%의 성장율로 급속히 발전하고 있지만, 이의 생산은 대부분 중소기업에 집중되어 아직도 수동적인 설계 및 생산에서 벗어나지 못하고 있고, 대기업에서는 우리표준에 맞지 않는 값비싼 외국의 “금형설계용 CAD 시스템(Computer Aided Design System)”을 도입하여 금형을 설계, 제작하고있는 설정이다.(중략)

  • PDF

Experimental Study on the Development of High-Performance Concrete (Properties of Super-flowing Concrete) (고성능 콘크리트 개발에 관한 실험적 연구(제2보, 초유동 콘크리트의 기초물성))

  • 조일호;한정호;정재동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.51-56
    • /
    • 1993
  • This is a part a study on the development of High-Performance Concrete ; about experimental results from several test methods to estimate workability in fresh concrete and influences of concrete mix design that affects properties of super-flowing concrete. Super-flowing concrete can be filled in a formwork without any vibration because of its excellent workability of passing narrow space and filling complicated shaped mold, new test methods should be used to estimate the workability and rhelogy in super-flowing concrete instead of slump test method in conventional concrete.

  • PDF