• 제목/요약/키워드: moisture gradients

Search Result 48, Processing Time 0.034 seconds

Diversity of Culturable Soil Micro-fungi along Altitudinal Gradients of Eastern Himalayas

  • Devi, Lamabam Sophiya;Khaund, Polashree;Nongkhlaw, Fenella M.W.;Joshi, S.R.
    • Mycobiology
    • /
    • v.40 no.3
    • /
    • pp.151-158
    • /
    • 2012
  • Very few studies have addressed the phylogenetic diversity of fungi from Northeast India under the Eastern Himalayan range. In the present study, an attempt has been made to study the phylogenetic diversity of culturable soil fungi along the altitudinal gradients of eastern Himalayas. Soil samples from 24 m above sea level to 2,000 m above sea level altitudes of North-East India were collected to investigate soil micro-fungal community structure and diversity. Molecular characterization of the isolates was done by PCR amplification of 18S rDNA using universal primers. Phylogenetic analysis using BLAST revealed variation in the distribution and richness of different fungal biodiversity over a wide range of altitudes. A total of 107 isolates were characterized belonging to the phyla Ascomycota and Zygomycota, corresponding to seven orders (Eurotiales, Hypocreales, Calosphaeriales, Capnodiales, Pleosporales, Mucorales, and Mortierellales) and Incertae sedis. The characterized isolates were analysed for richness, evenness and diversity indices. Fungal diversity had significant correlation with soil physico-chemical parameters and the altitude. Eurotiales and Hypocreales were most diverse and abundant group of fungi along the entire altitudinal stretch. Species of Penicillium (D=1.44) and Aspergillus (D=1.288) were found to have highest diversity index followed by Talaromyces (D=1.26) and Fusarium (D=1.26). Fungal distribution showed negative correlation with altitude and soil moisture content. Soil temperature, pH, humidity and ambient temperature showed positive correlation with fungal distribution.

Progressive Succession and Potential Natural Vegetation on the Forest Vegetation in and surrounding Daegu, Korea (대구 인접 지역 삼림식생의 진행천이와 잠재자연식생)

  • Choung, Heung-Lak;Chun, Young-Moon;Lee, Ho-Joon
    • Journal of Ecology and Environment
    • /
    • v.29 no.3
    • /
    • pp.265-275
    • /
    • 2006
  • This study represents the mechanism of progressive succession and potential natural vegetation on the forest vegetation in and surrounding Daegu. As a result of DCA, the feature of community was determined by an altitude and humid gradients. The soil moisture, contents of organic matter and total nitrogen increased as the community developed. In the interspecific association analysis, the forest vegetation was divided into two species groups and they were influenced by temperature and soil moisture. Especially, each two groups showed different stages of vegetation development according to the progressive succession and life form composition supported those results. It was predicted that Quercus variabilis, Q. acutissima, Q. dentata and Pinus densiflora communities would develop into Q. serrata community or Q. mongolica community depending on their location or species composition. In the study area, the potential natural vegetation was divided into 3 communities by biogeographical gradients such as species composition, soil environment, and geographical features: 1)Q. mongolica community in the middle-upper area of the mountain, 2)Q. serrata community in the middle-lower area of the mountain and 3)Carpinus cordata-Acer mono community in the cove area. It is suggested that the Q.mongolica and C.cordata-A.mono communities become actual vegetation and potential natural vegetation. But it is also suggested that the P. densiflora community would be changed into the potential natural vegetation of the Q. mongolica community and Q. serrata community on the basis of the present species composition.

Analysis of the Effects of Drainage Systems in Wetlands Based on Changes in Groundwater Level, Soil Moisture Content, and Water Quality (지하수위, 토양수분함량 및 수질변화를 활용한 습윤화 지역의 배수시설 효과 평가)

  • Kim, Chang-Hoon;Ryu, Jeong-Ah;Kim, Deog-Geun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.251-260
    • /
    • 2016
  • Groundwater flow due to hydraulic gradients across a geologic barrier surrounding a dam reservoir can cause swamps or wetlands to form on the downstream side of the dam, thereby restricting land use. The difference in head between the reservoir level and the downstream groundwater level creates a hydraulic gradient, allowing water to flow through the geologic barrier. We constructed a drainage system at the Daecheong dam to study the effects on groundwater levels and soil moisture contents. The drainage system consisted of a buried screened pipe spanning a depth of 1-1.5 m below a land surface. Groundwater levels were monitored at several monitoring wells before and after the drainage system was installed. Most well sites recorded a decline in groundwater level on the order of 1 m. The high-elevated site (monitoring well W1) close to the reservoir showed a significant decline in groundwater level of more than 2 m, likely due to rapid discharge by the drainage system. Soil moisture contents were also analyzed and found to have decreased after the installation of the drainage system, even considering standard deviations in the soil moisture contents. We conclude that the drainage system effectively lowered groundwater levels on the downstream side of the dam. Furthermore, we emphasize that water seepage analyses are critical to embankment dam design and construction, especially in areas where downstream land use is of interest.

Variation of Ecological Niche of Quercus serrata under Elevated $CO_2$ Concentration and Temperature ($CO_2$ 농도 및 온도 상승에 의한 졸참나무의 생태적 지위 변화)

  • Cho, Kyu-Tae;Jeong, Heon-Mo;Han, Young-Sub;Lee, Seung-Hyuk
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • In order to investigate effects of elevated $CO_2$ concentration and temperature on the ecological niche of Quercus serrata in Korea. We divided experimental condition in the greenhouse that are control (ambient condition) and treatment with elevated $CO_2$ (approximately 1.6 above than control) and increased air temperature (approximately $2.2^{\circ}C$ above than control). We measured twenty kind characters of seedlings and calculated the ecological niche breadth. As a result, the ecological niche breadth, treatment was widened in the light gradient than the control, was narrowed in the moisture and nutrient gradient. This is may be predicted when the global warming progress, Q. serrata is increases resistance to light environment, and decrease resistance to moisture and nutrient environment. According to the principal component analysis (PCA), control and treatment were arranged based on factor 1 and 2 in each environment gradients. Ecological response is involved variety characters. Among them, indicating that Characters of production is involved in many a parts.

Linking Leaf Functional Traits with Plant Resource Utilization Strategy in an Evergreen Scrub Species Rhododendron caucasicum Pall. along Longitudinal Gradient in Georgia (The South Caucasus)

  • Ekhvaia, Jana;Bakhia, Arsena;Asanidze, Zezva;Beltadze, Tornike;Abdaladze, Otar
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.2
    • /
    • pp.110-121
    • /
    • 2022
  • Leaf functional traits widely have been used to understand the environmental controls of resource utilization strategy of plants along the environmental gradients. By using key leaf functional traits, we quantified the relationships between leaf traits and local climate throughout the distributional range of Rhododendron caucasicum Pall. in eastern and western Georgian mountains (the South Caucasus). Our results revealed, that all traits showed high levels of intraspecific variability across study locations and confirmed a strong phenotypic differentiation of leaf functional variation along the east-west longitudinal gradient in response to the local climate; out of the explored climatic variables, the moisture factors related to precipitation and number of precipitation and dry days for winter and growth seasons were more strongly related to leaf trait variation than the elevation and air temperature. Among studied leaf traits, the leaf specific area (SLA) showed the highest level of variability indicating the different resource utilization strategies of eastern and western-central Rh. caucasicum individuals. High SLA leaves for western-central Caucasian individuals work in relatively resource-rich environments (more humid in terms of precipitation amount and the number of precipitation days in winter) and could be explained by preferential allocation to photosynthesis and growth, while eastern Caucasian samples work in resource-poor environments (less humid in terms of precipitation amount and the number of precipitation days in winter) and the retention of captured resources is a higher priority appearing in a low SLA leaves. However, more evidence from a broader study of the species throughout its distribution range by including additional environmental factors and molecular markers are needed for firmer conclusions of intraspecific variability of Rh. caucasicum.

Growth Response and Ecological Niche of Quercus Dentata Thunb. Sapling under the Light, Moisture Content, Soil Texture and Nutrient Treatment (광, 수분, 토성 그리고 유기물 처리에 따른 떡갈나무 유식물의 생육 반응과 생태적 지위)

  • Kim, Eui-Joo;Jeong, Young-Ho;Park, Jae-Hoon;Lee, Eung-Pill;Lee, Seung-Yeon;Lee, Soo-In;Hong, Young-Sik;Jang, Rae-Ha;Ceung, Sang-Hoon;Lee, Young-Keun;You, Young-Han;Cho, Kuy-Tae
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.102-108
    • /
    • 2020
  • This study is to analyze the growth response of the Quercus dentata seedlings to four environmental factors and measure the ecological niche breadth. Environmental factors were light, moisture content, soil texture, and organic matter, treated with four gradients. The more quantity light increased, the heavier the leaves biomass, aboveground biomass, belowground biomass and plant biomass was. In treatment of water content and soil texture, growth response was no difference. The more organic matter increased, the heavier aboveground biomass was, but the remaining trait of plant was no difference. The ecological niche breadth was 0.865 in light, 0.995 in moisture content, 0.994 in soil texture and 0.988 in nutrient. Ecological niche breadth was the widest in the moisture content treatment and the narrowest in the light treatment. This means that the growth of Q. dentata seedlings grows well as the amount of light increases, and is sensitive to light, Thus, it is determined a growth and ecological niche breadth by light factors.

Food Preservation Technology at Subzero Temperatures: A Review

  • Shafel, Tim;Lee, Seung Hyun;Jun, Soojin
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.261-270
    • /
    • 2015
  • Purpose: Cold storage is the most popular method used to preserve highly perishable foods such as beef and fish. However, at refrigeration temperatures, the shelf life of these foods is limited, and spoilage leads to massive food waste. Moreover, freezing significantly affects the food's properties. Ice crystallization and growth during freezing can cause irreversible textural damage to foods through volumetric expansion, moisture migration induced by osmotic pressure gradients, and concentration of solutes,which can lead to protein denaturation. Methods: Although freezing can preserve perishable foods for months, these disruptive changes decrease the consumer's perception of the food's quality. Therefore, the development and testing of new and improved cold storage technologies is a worthwhile pursuit. Results: The process of maintaining a food product in an unfrozen state below its equilibrium freezing temperature is known as supercooling. As supercooling has been shown to offer a considerable improvement over refrigeration for extending a perishable product's shelf life, implementation of supercooling in households and commercial refrigeration units would help diminish food waste. Conclusions: A commercially viable supercooling unit for all perishable food items is currently being developed and fabricated. Buildup of this technology will provide a meaningful improvement in the cold storage of perishable foods, and will have a significant impact on the refrigeration market as a whole.

Summer Precipitation Variability in the Han River Basin within the Context of Global Temperature Gradients (전지구 온도지표를 이용한 한강유역의 여름철 강우특성 변화 분석)

  • Jeong, Min-Su;Kim, Jong-Suk;Moon, Young-Il;Hwang, Sung-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1151-1159
    • /
    • 2014
  • In this study, two global simple indices are used to investigate climate variability and change in observations. Land-Ocean Contrast (LOC) is an index of area-averaged surface temperature contrast between land and ocean. Meridional Temperature Gradient (MTG) is defined as the mean meridional temperature gradient in the Northern Hemisphere from mid to high latitude and sub-tropical zonal bands. These indices have direct or indirect effects on changing in atmospheric circulations and atmospheric moisture transport from north-south or east-west into East Asia (EA). In addition, warm season hydrometeorology in EA is highly associated with water supplies for coupled human and natural systems including drinking water, irrigation, hydropower generation as well as fisheries. Therefore, in this study, we developed an empirical separation approach for summer rainfall from typhoon and monsoon. An exploratory analysis was also conducted to identify the regional patterns of summer monsoon precipitation over the Korean peninsula within the context of changes in different types of temperature gradients. The results show significant and consistent changes in summer monsoon rainfall during the summer season (June-September) in South Korea.

Ecological Niche of Quercus acutissima and Quercus variabilis (상수리나무와 굴참나무의 생태적 지위에 관한 연구)

  • Kim, Hae-Ran;Jeong, Heon-Mo;Kim, Hyea-Ju;You, Young-Han
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.385-391
    • /
    • 2008
  • In Korea, Quercus acutissima distributed in good condition with high nutrients and moisture content, but Quercus variabilis in dry soil or rock habitate. In order to understand this ecological distribution of Q. acutissima and Q. variabilis, we cultivated the seedlings of two oak species treated with light, soil moisture and nutrient gradients each four level, from May to October in glass house. Then we measured the ecological niche breadth and niche overlap of the two species, and analyzed the relationship of competition using cluster analysis and PCA ordination. Ecological niche breadths of Q. acutissima under moisture and nutrient treatments were slightly wider than those under light one. Among 14 characters measured, 6 characters related with length items were wider in all the environmental treatments, but 8 characters connected with weight terms narrower in light treatment. Ecological niche breadths of Q. variabilis under moisture and nutrient treatment were wider than those of light one. Ecological niche of Q. acutissima was wider than those of Q. variabilis in all the environmental treatments. Ecological overlap between two species was higher with a range of 0.87$\sim$0.92, especially higher in soil moisture factor. These results means that Q. acutissima is more competitive than Q. variabilis, especially in soil moisture condition. Two species were ordinated with distinct group based on 9 characters. From these results, it can be explained that what Q. variabilis distributed in bad soil condition is due to the escape strategy, because of its low competitive ability to Q. acutissima in natural communities.

Estimation of Moisture Content in Cucumber and Watermelon Seedlings Using Hyperspectral Imagery (초분광영상 이용 오이 및 수박 묘의 수분함량 추정)

  • Kim, Seong-Heon;Kang, Jeong-Gyun;Ryu, Chan-Seok;Kang, Ye-Seong;Sarkar, Tapash Kumar;Kang, Dong Hyeon;Ku, Yang-Gyu;Kim, Dong-Eok
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.34-39
    • /
    • 2018
  • This research was conducted to estimate moisture content in cucurbitaceae seedlings, such as cucumber and watermelon, using hyperspectral imagery. Using a hyperspectral image acquisition system, the reflectance of leaf area of cucumber and watermelon seedlings was calculated after providing water stress. Then, moisture content in each seedling was measured by using a dry oven. Finally, using reflectance and moisture content, the moisture content estimation models were developed by PLSR analysis. After developing the estimation models, performance of the cucumber showed 0.73 of $R^2$, 1.45% of RMSE, and 1.58% of RE. Performance of the watermelon showed 0.66 of $R^2$, 1.06% of RMSE, and 1.14% of RE. The model performed slightly better after removing one sample from cucumber seedlings as outlier and unnecessary. Hence, the performance of new model for cucumber seedlings showed 0.79 of $R^2$, 1.10% of RMSE, and 1.20% of RE. The model performance combined with all samples showed 0.67 of $R^2$, 1.26% of RMSE, and 1.36% of RE. The model of cucumber showed better performance than the model of watermelon. This is because variables of cucumber are consisted of widely distributed variation, and it affected the performance. Further, accuracy and precision of the cucumber model were increased when an insignificant sample was eliminated from the dataset. Finally, it is considered that both models can be significantly used to estimate moisture content, as gradients of trend line are almost same and intersected. It is considered that the accuracy and precision of the estimating models possibly can be improved, if the models are constructed by using variables with widely distributed variation. The improved models will be utilized as the basis for developing low-priced sensors.