DOI QR코드

DOI QR Code

Variation of Ecological Niche of Quercus serrata under Elevated $CO_2$ Concentration and Temperature

$CO_2$ 농도 및 온도 상승에 의한 졸참나무의 생태적 지위 변화

  • Cho, Kyu-Tae (Department of Biology Education, Seowon University) ;
  • Jeong, Heon-Mo (Ecological Adaptation Research Team, National Institute of Ecology) ;
  • Han, Young-Sub (Ecological Monitoring Research Team, National Institute of Ecology) ;
  • Lee, Seung-Hyuk (Ecological Monitoring Research Team, National Institute of Ecology)
  • 조규태 (서원대학교 생물교육과) ;
  • 정헌모 (국립생태원 생태적응연구팀) ;
  • 한영섭 (국립생태원 자연환경조사팀) ;
  • 이승혁 (국립생태원 자연환경조사팀)
  • Received : 2014.03.25
  • Accepted : 2014.04.14
  • Published : 2014.06.30

Abstract

In order to investigate effects of elevated $CO_2$ concentration and temperature on the ecological niche of Quercus serrata in Korea. We divided experimental condition in the greenhouse that are control (ambient condition) and treatment with elevated $CO_2$ (approximately 1.6 above than control) and increased air temperature (approximately $2.2^{\circ}C$ above than control). We measured twenty kind characters of seedlings and calculated the ecological niche breadth. As a result, the ecological niche breadth, treatment was widened in the light gradient than the control, was narrowed in the moisture and nutrient gradient. This is may be predicted when the global warming progress, Q. serrata is increases resistance to light environment, and decrease resistance to moisture and nutrient environment. According to the principal component analysis (PCA), control and treatment were arranged based on factor 1 and 2 in each environment gradients. Ecological response is involved variety characters. Among them, indicating that Characters of production is involved in many a parts.

한반도의 낙엽성 참나무인 졸참나무(Quercus serrata)의 생태적 지위폭이 $CO_2$ 농도와 온도가 상승하였을 때 광, 수분 그리고 영양소 구배에서 어떻게 변화하는지 알아보고자 유리온실에서 대조구와 온난화처리구로 구분하여 재배한 후, 유식물의 20가지 형질을 측정하고 생태적 지위폭을 계산하였다. 그 결과, 생태적 지위폭은 광구배에서 대조구보다 온난화처리구가 넓어졌고, 수분과 영양소 구배에서는 대조구보다 온난화처리구가 좁아졌다. 이것은 지구온난화 진행 시 졸참나무는 광 환경에 대한 내성이 증가되고, 수분과 영양소 환경에 대한 내성이 감소될 것으로 예측할 수 있다. 주성분분석(PCA) 결과, 각 환경 구배에서 요인 1과 요인 2에 의해 대조구와 온난화처리구가 구분되었다. 생태학적 반응은 다양한 형질이 종합적으로 관여하며, 그 중에서 식물의 생산량을 나타내는 형질이 많은 부분 관여하는 것으로 판단된다.

Keywords

References

  1. Chase JM and MA Leibold. 2003. Ecological Niches: linking classical and contemporary approaches. The University of Chicago Press, Chicago. pp.2-10.
  2. Cho KT, RH Jang, SH Lee, YS Han and YH You. 2013. Effects of Elevated $CO_{2}$ and Temperature on the Changes of the Ecological Niche of Quercus acutissima and Quercus variabilis. Korean J. Ecol. Environ. 46:429-439. (in Korean)
  3. Crookshanks M, G Taylor and M Broadmeadow. 1998. Elevated $CO_{2}$ and tree root growth: contrasting responses in Fraxinus escelsior, Quercus petraea and pinus sylvestris. New Phytologist 138:241-250. https://doi.org/10.1046/j.1469-8137.1998.00109.x
  4. IPCC. 2007. Climate change 2007: Mitigation of climate change. Contribution working group III contribution to the fourth assessment report of the intergovernmental panel on climate change. Cambridge university press, Cambridge, New York. pp.176.
  5. Kim HJ, BK Shin, YH You and CH Kim. 2008. A Study on the Vegetation of the Present-day Potential Natural State of Water for Flood Plain Restoration in South Korea. Korean J. Environ. Ecol. 22:564-594. (in Korean)
  6. Kim HR, HM Jeong, HJ Kim and YH You. 2008. Ecological Niche of Quercus acutissima and Quercus variabilis. Korean J. Environ. Biol. 26:385-391.
  7. Kim JH. 1995. High ecology. Kyomunsa, Seoul. pp.317-384. (in Korean)
  8. Kim SB. 2008. Wetlands and Environment Resources. Worin Publisher. pp.61-83. (Korean Literature)
  9. Kim YS and HJ Kang. 2003. Effects of elevated atmospheric $CO_{2}$ on wetland plants: a review. Korean J. Limnol. 36:391- 402. (in Korean)
  10. Kobayashi N. 2006. Global Warming and Forest Business (3th ed). Bomoondang, Seoul. pp.268.
  11. Korea Meterological Administration. 2008. Report of Global Atmosphere Watch 2008. Seoul, Korea. pp.177.
  12. Levine JM and J HilleRisLambers. 2009. The importance of niches for the maintenance of species diversity. Nature 461: 254-258. https://doi.org/10.1038/nature08251
  13. Levins R. 1968. Evolution in changing environments. Princeton University Press, Princeton, New Jersey, USA.
  14. Odum EP. 1969. The strategy of ecosystem development. Science 164:262-270. https://doi.org/10.1126/science.164.3877.262
  15. Onoda Y, T Hirose and K Hikosaka. 2009. Does leaf photosynthesis adapt to $CO_{2}$-enriched environments? An experiment on plants originating from three natural $CO_{2}$ springs. New Phytologist 182:698-709. https://doi.org/10.1111/j.1469-8137.2009.02786.x
  16. Park HR. 2003. Global warming and its effects and preventive. Uyoug, Seoul. pp.285. (Korean Literature)
  17. Pianka ER. 1983. Evolutionary ecology (3rd ed.). Harper & Row, New york. pp.253.
  18. Rogers HH and GB Runion. 1994. Plant responses to atmospheric $CO_{2}$ enrichment with emphasis on roots and the rhizosphere. Environ. Pollut. 83:155-189. https://doi.org/10.1016/0269-7491(94)90034-5
  19. Song MS. 2008. Analysis of distribution and association structure on the Sawtooth Oak (Quercus acutissima) Forest in Korea. Ph. D. Dissertation, Changwon National University, pp.105-110 (in Korean)
  20. Yeocheon Ecological Research Society. 2005. Modern ecological experiments. Kyomunsa, Seoul. pp.239-243 (in Korean)
  21. You KB. 2010. Geography: a portal to green growth. J. Korean Geo. Soci. 45:11-25. (in Korean).