DOI QR코드

DOI QR Code

Food Preservation Technology at Subzero Temperatures: A Review

  • Shafel, Tim (Department of Human Nutrition, Food and Animal Sciences, University of Hawaii) ;
  • Lee, Seung Hyun (Department of Biosystems Machinery Engineering, Chungnam National University) ;
  • Jun, Soojin (Department of Human Nutrition, Food and Animal Sciences, University of Hawaii)
  • Received : 2015.08.15
  • Accepted : 2015.08.24
  • Published : 2015.09.01

Abstract

Purpose: Cold storage is the most popular method used to preserve highly perishable foods such as beef and fish. However, at refrigeration temperatures, the shelf life of these foods is limited, and spoilage leads to massive food waste. Moreover, freezing significantly affects the food's properties. Ice crystallization and growth during freezing can cause irreversible textural damage to foods through volumetric expansion, moisture migration induced by osmotic pressure gradients, and concentration of solutes,which can lead to protein denaturation. Methods: Although freezing can preserve perishable foods for months, these disruptive changes decrease the consumer's perception of the food's quality. Therefore, the development and testing of new and improved cold storage technologies is a worthwhile pursuit. Results: The process of maintaining a food product in an unfrozen state below its equilibrium freezing temperature is known as supercooling. As supercooling has been shown to offer a considerable improvement over refrigeration for extending a perishable product's shelf life, implementation of supercooling in households and commercial refrigeration units would help diminish food waste. Conclusions: A commercially viable supercooling unit for all perishable food items is currently being developed and fabricated. Buildup of this technology will provide a meaningful improvement in the cold storage of perishable foods, and will have a significant impact on the refrigeration market as a whole.

Keywords

References

  1. Agnelli, M. E. and R. H. Mascheroni. 2001. Cryomechanical freezing: A model for the heat transfer process. Journal of Food Engineering 47(4):263-270. https://doi.org/10.1016/S0260-8774(00)00126-6
  2. Aleksandrov, V. D., A. A. Barannikov and N. V. Dobritsa. 2000. Effect of magnetic field on the supercooling of water drops. Inorganic Material 36:895-898. https://doi.org/10.1007/BF02758700
  3. Ando, Y., K. Mizutani and N. Wakatsuki. 2014. Electrical impedance analysis of potato tissues during drying. Journal of Food Engineering 121:24-31. https://doi.org/10.1016/j.jfoodeng.2013.08.008
  4. Aragones, J. L., L. G. MacDowell, J. I. Siepmann and C. Vega. 2011. Phase diagram of water under an applied electric field. Physical Review Letters 107(15):155702. https://doi.org/10.1103/PhysRevLett.107.155702
  5. Ashie, I. N. A., J. P. Smith, B. K. Simpson and D. N. F. Haard. 1996. Spoilage and shelf-life extension of fresh fish and shellfish. Critical Reviews in Food Science and Nutrition 36(1-2):87-121. https://doi.org/10.1080/10408399609527720
  6. Barriuso, B., I. Astiasaran and D. Ansorenax. 2012. A review of analytical methods measuring lipid oxidation status in foods: a challenging task. European Food Research and Technology 236(1):1-15. https://doi.org/10.1007/s00217-012-1866-9
  7. Bauchot, A. D., F. R. Harker and W. M. Arnold. 2000. The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biology and Technology 18(1):9-18. https://doi.org/10.1016/S0925-5214(99)00056-3
  8. Borch, E., M. L. Kant-Muermans and Y. Blixt. 1996. Bacterial spoilage of meat and cured meat products. International Journal of Food Microbiology 33(1):v103-120. https://doi.org/10.1016/0168-1605(96)01135-X
  9. Buzby, J. C and J. Hyman. 2012. Total and per capita value of food loss in the United States. Food Policy 37(5): 561-570. https://doi.org/10.1016/j.foodpol.2012.06.002
  10. Chang, B. Y. and S. M. Park. 2010. Electrochemical impedance spectroscopy. Annual Review of Analytical Chemistry 3(1):207-229. https://doi.org/10.1146/annurev.anchem.012809.102211
  11. Chee, G., N. Rungraeng, J. H. Han and S. Jun. 2014. Electrochemical impedance spectroscopy as an alternative to determine dielectric constant of potatoes at various moisture contents. Journal of Food Science 79(2): E195-E201. https://doi.org/10.1111/1750-3841.12335
  12. Chen, C. (1986). Temperature changes in citrus fruit at sub-freezing temperatures. Proc. Fla. State Hort. Soc., 92, 1-3.
  13. Chevalier, D., A. Sequeira-Munoz, A. Le Bail, B. K. Simpson and M. Ghoul. 2000a. Effect of freezing conditions and storage on ice crystal and drip volume in turbot (Scophthalmus maximus): Evaluation of pressure shift freezing vs. air-blast freezing. Innovative Food Science and Emerging Technologies 1(3):193-201. https://doi.org/10.1016/S1466-8564(00)00024-2
  14. Chevalier, D., A. Sequeira-Munoz, A. Le Bail, B. K. Simpson and M. Ghoul. 2000b. Effect of pressure shift freezing, air-blast freezing and storage on some biochemical and physical properties of turbot (Scophthalmus maximus). LWT - Food Science and Technology 33(8):570-577. https://doi.org/10.1006/fstl.2000.0721
  15. Damez, J. L., S. Clerjon, S. Abouelkaram and J. Lepetit. 2008. Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat ageing. Journal of Food Engineering 85(1): 116-122. https://doi.org/10.1016/j.jfoodeng.2007.07.026
  16. Damodaran, S., K. L. Parkin and O. R. Fennema. 2008. Fennema's Food Chemistry. (4th ed.). Boca Raton, FL: CRC Press.
  17. Davies, P. L and B. D. Sykes. 1997. Antifreeze proteins. Current Opinion in Structural Biology 7(6):828-834. https://doi.org/10.1016/S0959-440X(97)80154-6
  18. Delgado, A. E., L. Zheng and D. W. Sun. 2008. Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology 2(3):263-270. https://doi.org/10.1007/s11947-008-0111-9
  19. Duun, A. S and T. Rustad. 2008. Quality of superchilled vacuum packed Atlantic salmon (Salmo salar) fillets stored at -1.4 and $-3.6^{\circ}C$. Food Chemistry 106(1): 122-131. https://doi.org/10.1016/j.foodchem.2007.05.051
  20. Feeney, R. E. and Y. Yeh. 1998. Antifreeze proteins: Current status and possible food uses. Trends in Food Science and Technology 9(3):102-106. https://doi.org/10.1016/S0924-2244(98)00025-9
  21. Fernandez-Segovia, I., A. Fuentes, M. Alino, R. Masot, M. Alcaniz and J. M. Barat. 2012. Detection of frozenthawed salmon (Salmo salar) by a rapid low-cost method. Journal of Food Engineering 113(2):210-216. https://doi.org/10.1016/j.jfoodeng.2012.06.003
  22. Fernandez, P. P., L. Otero, M. M. Martino, A. D. Molina-Garcia and P. D. Sanz. 2008. High-pressure shift freezing: recrystallization during storage. European Food Research and Technology 227(5):1367-1377. https://doi.org/10.1007/s00217-008-0853-7
  23. Fuentes, A., R. Masot, I. Fernandez-Segovia, M. Ruiz-Rico, M. Alcaniz and J. M. Barat. 2013. Differentiation between fresh and frozen-thawed sea bream (Sparus aurata) using impedance spectroscopy techniques. Innovative Food Science and Emerging Technologies 19:210-217. https://doi.org/10.1016/j.ifset.2013.05.001
  24. Fukuma, Y., A. Yamane, T. Itoh, Y. Tsukamasa and M. Ando. 2012. Application of supercooling to long-term storage of fish meat. Fisheries Science 78(2):451-461. https://doi.org/10.1007/s12562-011-0460-6
  25. Gallart-Jornet, L., T. Rustad, J. M. Barat, P. Fito and I. Escriche. 2007. Effect of superchilled storage on the freshness and salting behaviour of Atlantic salmon (Salmo salar) fillets. Food Chemistry 103(4):1268-1281. https://doi.org/10.1016/j.foodchem.2006.10.040
  26. Gram, L., L. Ravn, M. Rasch, J. B. Bruhn, A. B. Christensen and M. Givskov. 2002. Food spoilage interactions between food spoilage bacteria. International Journal of Food Microbiology 78(1-2):79-97. https://doi.org/10.1016/S0168-1605(02)00233-7
  27. Griffith, M. and K. V. Ewart. 1995. Antifreeze proteins and their potential use in frozen foods. Biotechnology Advances 13(3):375-402. https://doi.org/10.1016/0734-9750(95)02001-J
  28. Guermazi, M., U. Troltzsch, O. Kanoun and N. Derbel. 2011. Assessment of beef meat aging using impedance spectroscopy. In 2011 8th International Multi-Conference on Systems, Signals and Devices (SSD) (pp. 1-6).
  29. Hozumi, T., A. Saito, S. Okawa and T. Matsui. 2002. Freezing phenomena of supercooled water under impacts of ultrasonic waves. International Journal of Refrigeration 25(7):948-953. https://doi.org/10.1016/S0140-7007(01)00104-9
  30. Inada, T., X. Zhang, A. Yabe and Y. Kozawa. 2001. Active control of phase change from supercooled water to ice by ultrasonic vibration 1. Control of freezing temperature. International Journal of Mass Transfer 44:4523-4531. https://doi.org/10.1016/S0017-9310(01)00057-6
  31. Iwasaka, M., M. Onishi, S. Kurita and N. Owada. 2011. Effects of pulsed magnetic fields on the light scattering property of the freezing process of aqueous solutions. Journal of Applied Physics 109:07E320. https://doi.org/10.1063/1.3556776
  32. James, C., V. Seignemartin and S. J. James. 2009. The freezing and supercooling of garlic (Allium sativum L.). International Journal of Refrigeration 32(2):253-260. https://doi.org/10.1016/j.ijrefrig.2008.05.012
  33. Kaale, L. D. and T. M. Eikevik. 2014. The development of ice crystals in food products during the superchilling process and following storage, a review. Trends in Food Science and Technology 39(2):91-103. https://doi.org/10.1016/j.tifs.2014.07.004
  34. Kaale, L. D., T. M. Eikevik, T. Rustad and K. Kolsaker. 2011. Superchilling of food: A review. Journal of Food Engineering 107(2):141-146. https://doi.org/10.1016/j.jfoodeng.2011.06.004
  35. Kalichevsky, M. T., D. Knorr and P. J. Lillford. 1995. Potential food applications of high-pressure effects on ice-water Transitions. Trends Food Sci. Tech. 6: 253-259. https://doi.org/10.1016/S0924-2244(00)89109-8
  36. Khadatkar, R. M., S. Kumar and S. C. Pattanayak. 2004. Cryofreezing and cryofreezer. Cryogenics 44(9):661-678. https://doi.org/10.1016/j.cryogenics.2004.03.008
  37. Kiani, H. and D. W. Sun. 2011. Water crystallization and its importance to freezing of foods: A review. Trends in Food Science and Technology 22(8):407-426. https://doi.org/10.1016/j.tifs.2011.04.011
  38. Kitazawa, K., Y. Ikezoe, H. Uetake and N. Hirota. 2001. Magnetic field effects on water, air and powders. Physica B: Condensed Matter, 294-295, 709-714. https://doi.org/10.1016/S0921-4526(00)00749-3
  39. Kumano, H., T. Hirata, S. Takeda and T. Kudoh. 2011. Quantitative evaluation of the effects of poly-vinyl alcohol on supercooling phenomena of water. International Journal of Refrigeration 34:1999-2006. https://doi.org/10.1016/j.ijrefrig.2011.06.016
  40. LeBail, A., D. Chevalier, D. M. Mussa and M. Ghoul. 2002. High pressure freezing and thawing of foods: A review. International Journal of Refrigeration 25(5):504-513. https://doi.org/10.1016/S0140-7007(01)00030-5
  41. Li, J. K. and T. C. Lee. 1998. Bacterial extracellular ice nucleator effects on freezing of foods. Journal of Food Science 63:375-381. https://doi.org/10.1111/j.1365-2621.1998.tb15746.x
  42. Li, B. and D. W. Sun. 2002. Effect of power ultrasound on freezing rate during immersion freezing of potatoes. Journal of Food Engineering 55(3):277-282. https://doi.org/10.1016/S0260-8774(02)00102-4
  43. Livisay, S. A., Y. L. Xiong and W. G. Moody. 1996. Proteolytic activity and calcium effect in dark-firm-dry and pale-soft-exudative meat. LWT - Food Science and Technology 29(1-2):123-128. https://doi.org/10.1006/fstl.1996.0016
  44. Magnussen, O. M., A. Haugland, A. K. Torstveit Hemmingsen, S. Johansen and T. S. Nordtvedt. 2008. Advances in superchilling of food - Process characteristics and product quality. Trends in Food Science and Technology 19(8):418-424. https://doi.org/10.1016/j.tifs.2008.04.005
  45. Magnussen, O. M., A. Haugland, A. K. Torstveit Hemmingsen, S. Johansen and T. S. Nordtvedt. 2008. Advances in superchilling of food - Process characteristics and product quality. Trends in Food Science and Technology 19(8):418-424. https://doi.org/10.1016/j.tifs.2008.04.005
  46. Mancini, R. A. and M. C. Hunt. 2005. Current research in meat color. Meat Science, 71(1):100-121. https://doi.org/10.1016/j.meatsci.2005.03.003
  47. Martino, M. N., L. Otero, P. D. Sanz and N. E. Zaritzky. 1998. Size and location of ice crystals in pork frozen by high-pressure assisted freezing as compared to classical methods. Meat Sci. 50:303-313. https://doi.org/10.1016/S0309-1740(98)00038-2
  48. Mok, J. H., W. Choi, S. H. Park, S. H. Lee and S. Jun. 2015. Emerging pulsed electric field (PEF) and static magnetic field (SMF) combination technology for food freezing. International Journal of Refrigeration 50:137-145. https://doi.org/10.1016/j.ijrefrig.2014.10.025
  49. Monin, G. 1998. Recent methods for predicting quality of whole meat. Meat Science 49: Supplement 1, S231-S243. https://doi.org/10.1016/S0309-1740(98)90051-1
  50. Niu, J. and J. Y. Lee. 2000. A new approach for the determination of fish freshness by electrochemical impedance spectroscopy. Journal of Food Science 65(5):780-785. https://doi.org/10.1111/j.1365-2621.2000.tb13586.x
  51. Ocano-Higuera, V. M., E. Marquez-Rios, M. Canizales-Davila, F. J. Castillo-Yanez, R. Pacheco-Aguilar, M. E. Lugo-Sanchez and A. Z. Graciano-Verdugo. 2009. Postmortem changes in cazon fish muscle stored on ice. Food Chemistry 116(4):933-938. https://doi.org/10.1016/j.foodchem.2009.03.049
  52. Olafsdottir, G., H. L. Lauzon, E. Martinsdottir, J. Oehlenschlauger and K. Kristbergsson. 2006. Evaluation of shelf life of superchilled cod (Gadus morhua) fillets and the influence of temperature fluctuations during storage on microbial and chemical quality indicators. Journal of Food Science 71(2):S97-S109. https://doi.org/10.1111/j.1365-2621.2006.tb08928.x
  53. Oliver, M. A., I. Gobantes, J. Arnau, J. Elvira, P. Riu, N. Grebol and J. M. Monfort. 2001. Evaluation of the electrical impedance spectroscopy (EIS) equipment for ham meat quality selection. Meat Science 58(3): 305-312. https://doi.org/10.1016/S0309-1740(01)00033-X
  54. Orlowska, M., M. Havet and A. Le-Bail. 2009. Controlled ice nucleation under high voltage DC electrostatic field conditions. Food Research International 42(7): 879-884. https://doi.org/10.1016/j.foodres.2009.03.015
  55. Otero, L., M. Martino, N. Zaritzky, M. Solas and P. D. Sanz. 2000. Preservation of microstructure in peach and mango during high-pressure-shift freezing. Journal of Food Science 65(3):466-470. https://doi.org/10.1111/j.1365-2621.2000.tb16029.x
  56. Otero, L., P. Sanz, B. Guignon and P. D. Sanz. 2012. Pressure-shift nucleation: A potential tool for freeze concentration of fluid foods. Innovative Food Science and Emerging Technologies 13:86-99. https://doi.org/10.1016/j.ifset.2011.11.003
  57. Ozogul, F., K. D. A. Taylor, P. Quantick and Y. Ozogul. 2000. Chemical, microbiological and sensory evaluation of Atlantic herring (Clupea harengus) stored in ice, modified atmosphere and vacuum pack. Food Chemistry 71(2): 267-273. https://doi.org/10.1016/S0308-8146(00)00169-2
  58. Parfitt, J., M. Barthel and S. Macnaughton. 2010. Food waste within food supply chains: quantification and potential for change to 2050. Philosophical Transactions: Biological Sciences 365(1554):3065-3081. https://doi.org/10.1098/rstb.2010.0126
  59. Peleg, M., M. D. Normand and M. G. Corradini. 2012. The Arrhenius equation revisited. Critical Reviews in Food Science and Nutrition 52(9):830-851. https://doi.org/10.1080/10408398.2012.667460
  60. Petersen, A., H. Schneider, G. Rau and B. Glasmacher. 2006. A new approach for freezing of aqueous solutions under active control of the nucleation temperature. Cryobiology 53(2):248-257. https://doi.org/10.1016/j.cryobiol.2006.06.005
  61. Pliquett, U. 2010. Bioimpedance: A Review for Food Processing. Food Engineering Reviews 2(2):74-94. https://doi.org/10.1007/s12393-010-9019-z
  62. Shibkov, A. A., Y. I. Golovin, M. A. Zheltov, A. A. Korolev and A. A. Leonov. 2002. In situ monitoring of growth of ice from supercooled water by a new electromagnetic method. Journal of Crystal Growth 236(1-3):434-440. https://doi.org/10.1016/S0022-0248(01)02108-X
  63. Shichiri, T. and T. Nagata. 1981. Effect of electric currents on the nucleation of ice crystals in the melt. J. Cryst. Growth 54:207-210. https://doi.org/10.1016/0022-0248(81)90461-9
  64. Shichiri, T. and Y. Araki. 1986. Nucleation mechanism of ice crystals under electrical effect. J. Cryst. Growth 78: 502-508. https://doi.org/10.1016/0022-0248(86)90152-1
  65. Stevik, A. M., A. S. Duun, T. Rustad, M. O'Farrell, H. Schulerud and S. Ottestad. 2010. Ice fraction assessment by near-infrared spectroscopy enhancing automated superchilling process lines. Journal of Food Engineering 100(1):169-177. https://doi.org/10.1016/j.jfoodeng.2010.03.042
  66. Stonehouse, G. G. and J. A. Evans. 2015. The use of supercooling for fresh foods: A review. Journal of Food Engineering 148:74-79. https://doi.org/10.1016/j.jfoodeng.2014.08.007
  67. Streeter, E. M. and J. V. Spencer. 1973. Cryogenic and conventional freezing of chicken. Poultry Science 52(1):317-325. https://doi.org/10.3382/ps.0520317
  68. Sun, W., X. Xu, W. Sun, L. Ying and C. Xu. 2006. Effect of alternated electric field on the ice formation during freezing process of 0.9% $K_2MnOs$ water. IEEE 8th International Conference on; 2006 June 26-30; Bali, Indonesia: Properties and applications of Dielectric Materials; c2006.
  69. Sun, W., X. Xu, H. Zhang, W. Sun and C. Xu. 2006. The Mechanism Analysis of NaCl Solution Ice Formation Suppressed by Electric Field. IEEE 8th International Conference on; 2006 June 26-30; Bali, Indonesia: Properties and applications of Dielectric Materials; c2006.
  70. Vidacek, S., H. Medic, K. Botka-Petrak, J. Nezak and T. Petrak. 2008. Bioelectrical impedance analysis of frozen sea bass (Dicentrarchus labrax). Journal of Food Engineering 88(2):263-271. https://doi.org/10.1016/j.jfoodeng.2008.02.010
  71. Walstra, P. 2003. Physical Chemistry of Foods. New York, NY: Marcel Dekker, Inc.
  72. Woo, M. W. and A. S. Mujumdar. 2010. Effects of electric and magnetic field on freezing and possible relevance in freeze drying. Drying Technology 28(4):433-443. https://doi.org/10.1080/07373930903202077
  73. Wu, C., C. Yuan, X. Ye, Y. Hu, S. Chen and D. Liu. 2014. A critical review on superchilling preservation technology in aquatic product. Journal of Integrative Agriculture 13(12):2788-2806. https://doi.org/10.1016/S2095-3119(14)60841-8
  74. Wu, L., Y. Ogawa and A. Tagawa. 2008. Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing-thawing treatments on its impedance characteristics. Journal of Food Engineering 87(2): 274-280. https://doi.org/10.1016/j.jfoodeng.2007.12.003
  75. Zhang, X., T. Inada, A. Yabe, S. S. Lu and Y. Kozawa. 2001. Active control of phase change from supercooled water to ice by ultrasonic vibration 2. Generation of ice slurries and effect of bubble nuclei. Int. J. Mass Tran. 44: 4533-4539. https://doi.org/10.1016/S0017-9310(01)00058-8
  76. Zhang, L., H. Shen and Y. Luo. 2011. A nondestructive method for estimating freshness of freshwater fish. European Food Research and Technology 232(6): 979-984. https://doi.org/10.1007/s00217-011-1467-z