• Title/Summary/Keyword: modulus reduction

Search Result 323, Processing Time 0.027 seconds

Application of Scaling Theories to Estimate Particle Aggregation in a Colloidal Suspension

  • Park, Soongwan;Koo, Sangkyun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.260-266
    • /
    • 2022
  • Average aggregate size in particulate suspensions is estimated with scaling theories based on fractal concept and elasticity of colloidal gel. The scaling theories are used to determine structure parameters of the aggregates, i.e., fractal dimension and power-law exponent for aggregate size reduction with shear stress using scaling behavior of elastic modulus and shear yield stress as a function of particle concentration. The structure parameters are utilized to predict aggregate size which varies with shear stress through rheological modeling. Experimentally rheological measurement is conducted for aqueous suspension of zinc oxide particles with average diameter of 110 nm. The predicted aggregate size is about 1135 nm at 1 s-1 and 739 nm at 1000 s-1 on the average over the particle concentrations. It has been found that the predicted aggregate size near 0.1 s-1 agrees with that the measured one by a dynamic light scattering analyzer operated un-sheared.

Application of numerical methods for dynamic response induced by moving load on concrete shells containing nanoparticles with economic study

  • Taoqian Xie;Wei Han;Haoqi Chang;M.R. Motaghedfer
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.303-311
    • /
    • 2024
  • This paper conducts a thorough economic evaluation of integrating nanoparticles into concrete structures within the construction industry, aiming to elevate the material properties of concrete. Employing the Halpin-Tsai micromechanics theory for deriving the effective material properties of the nanocomposite concrete structure, the research investigates the nuanced impact of nanoparticles on various mechanical properties, including the modulus of elasticity, compressive strength, and their indirect effects on the percentage of reinforcement. Implementing the Euler theory to formulate the governing equation based on Hamilton's principle, the study delves into the pricing dynamics of nanoparticles and their influence on the overall cost structure of concrete structures. Notably, the findings reveal that a measured increase in the volume percentage of nanoparticles, up to 1%, results in a remarkable 78% improvement in elastic modulus and a substantial 142% reduction in armature percentage. Remarkably, from an economic perspective, the incremental cost associated with the integration of nanoparticles is relatively modest (around $1 per ton of concrete), considering the substantial enhancements in mechanical properties achieved.

Soil-structure interaction analysis of beams resting on multilayered geosynthetic-reinforced soil

  • Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.369-383
    • /
    • 2012
  • In this paper, soil-structure interaction analysis has been presented for beams resting on multilayered geosynthetic-reinforced granular fill-soft soil system. The soft soil and geosynthetic reinforcements are idealized as nonlinear springs and elastic membranes, respectively. The governing differential equations are solved by finite difference technique and the results are presented in non-dimensional form. It is observed from the study that use of geosynthetic reinforcement is not very effective for maximum settlement reduction in case of very rigid beam. Similarly the reinforcements are not effective for shear force reduction if the granular fill has very high shear modulus value. However, multilayered reinforced system is very effective for bending moment and differential settlement reduction.

A Damage Identification for Railway Bridges using Static Response (철도교량의 손상도 평가기법 개발에 관한 연구)

  • 최일윤;이준석;이종순;조효남
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1065-1073
    • /
    • 2002
  • A new damage identification technique using static displacement data is developed to assess the structural integrity of bridge structures. In the conventional damage assessment techniques using dynamic response, it is usually difficult to obtain a significant natural frequencies variation from the measured data because the natural frequencies variation is intrinsically not sensitive to the damage of a bridge. In this proposed identification method, the stiffness reduction of the bridges can be estimated using the static displacement data measured periodically and a specific loading test is not required. The static displacement data due to the dead load of the bridge structure can be measured by devices such as a laser displacement sensor. In this study, structural damage is represented by the reduction in the elastic modulus of the element. The damage factor of the element is introduced to estimate the stiffness reduction of the bridge under consideration. Finally, the proposed algorithm is verified using various numerical simulation and compared with other damage identification method. Also, the effect of noise and number of damaged elements on the identification are investigated. The results show that the proposed algorithm is efficient for damage identification of the bridges.

  • PDF

A modified shear strength reduction finite element method for soil slope under wetting-drying cycles

  • Tu, Yiliang;Zhong, Zuliang;Luo, Weikun;Liu, Xinrong;Wang, Sui
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.739-756
    • /
    • 2016
  • The shear strength reduction finite element method (SSRFEM) is a powerful tool for slope stability analysis. The factor of safety (FOS) of the slope can be easily calculated only through reducing effective cohesion (c′) and tangent of effective friction angle ($tan{\varphi}^{\prime}$) in equal proportion. However, this method may not be applicable to soil slope under wetting-drying cycles (WDCs), because the influence of WDCs on c′ and $tan{\varphi}^{\prime}$ may be different. To research the method of estimating FOS of soil slopes under WDCs, this paper presents an experimental study firstly to investigate the effects of WDCs on the parameters of shear strength and stiffness. Twelve silty clay samples were subjected to different number of WDCs and then tested with triaxial test equipment. The test results show that WDCs have a degradation effect on shear strength (${\sigma}_1-{\sigma}_3)_f$, secant modulus of elasticity ($E_s$) and c′ while little influence on ${\varphi}^{\prime}$. Hence, conventional SSRFEM which reduces c′ and $tan{\varphi}^{\prime}$ in equal proportion cannot be adopted to compute the FOS of slope under conditions of WDCs. The SSRFEM should be modified. In detail, c′ is merely reduced among shear strength parameters, and elasticity modulus is reduced correspondingly. Besides, a new approach based on sudden substantial changes in the displacement of marked nodes is proposed to identify the slope failure in SSRFEM. Finally, the modified SSRFEM is applied to compute the FOS of a slope example.

Effect of femoral mechanical properties on primary stability of cementless total hip arthroplasty: a finite element analysis

  • Reimeringer, Michael;Nuno, Natalia
    • Advances in biomechanics and applications
    • /
    • v.1 no.3
    • /
    • pp.187-210
    • /
    • 2014
  • With the goal of increasing the survivorship of the prosthesis and anticipating primary stability problems of new prosthetic implants, finite element evaluation of the micromotion, at an early stage of the development, is mandatory. This allows assessing and optimizing different designs without manufacturing prostheses. This study aimed at investigating, using finite element analysis (FEA), the difference in the prediction of the primary stability of cementless hip prostheses implanted into a $Sawbones^{(R)}$ 4th generation, using the manufacturer's mechanical properties and using mechanical properties close to that of human bone provided by the literature (39 papers). FEA was carried out on the composite $Sawbones^{(R)}$ implanted with a straight taper femoral stem subjected to a loading condition simulating normal walking. Our results show that micromotion increases with a reduction of the bone material properties and decreases with the augmentation of the bone material properties at the stem-bone interface. Indeed, a decrease of the cancellous Young modulus from 155MPa to 50MPa increased the average micromotion from $29{\mu}m$ up to $41{\mu}m$ (+42%), whereas an increase of the cancellous Young modulus from 155MPa to 1000MPa decreased the average micromotion from $29{\mu}m$ to $5{\mu}m$ (-83%). A decrease of cortical Young modulus from 16.7GPa to 9GPa increase the average global micromotion from $29{\mu}m$ to $35{\mu}m$ (+33%), whereas an increase of the cortical Young modulus from 16.7GPa to 21GPa decreased the average global micromotion from $29{\mu}m$ to $27{\mu}m$ (-7%). It can also be seen that the material properties of the cancellous structure had a greater influence on the micromotion than the material properties of the cortical structure. The present study shows that micromotion predicted at the stem-bone interface with material properties of the $Sawbones^{(R)}$ 4th generation is close to that predicted with mechanical properties of human femur.

The Influence of Water Storage on Mechanical Properties of Adhesive Resin (수중 보관이 접착용 레진의 물리적 성질에 미치는 영향)

  • Kim, Won-Chan;Lee, Kwang-won;Lee, Jeong;Yu, Mi-Kyoung;Kim, Jeong-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.193-202
    • /
    • 2006
  • Objective To evaluate the influence of water storage on the mechanical properties of dental adhesives over 1 and 3 months. Materials and Methods Adhesive resin sheets were prepared by pouring either All-bond 2(AB), Clearfil SE Bond(SE) into a mold measuring $15{\times}15{\times}0.9mm$. After solvent in primer evaporation, the adhesives were light-cured and removed from the mold and divided in two pieces, trimmed to hourglass shape that were used to determine the micro-tensile strength(MTS). Another hourglass shaped metal mold measuring $2.0{\times}1.5mm$ in cross-section area was made to determine the Young's modulus(E). Adhesive specimens for Young's modulus(E) were prepared in the same method. Specimens were stored at $37^{\circ}C$ in distilled water and tested after 1 and 3 months. The data were analyzed by one-way ANOVA and Tukey's test. Results Water storage significantly decreased the micro-tensile strength(MTS) of AB and SE specimens after 1 and 3 months(P<0.05). The Young's modulus(E) were also decreased after water storage for 1 and 3 months, but statistically not significant in each group of AB and SE group respectively. Conclusions Long-term exposure of adhesive resin to water can cause reduction of mechanical properties. It may compromise resin/dentin bonds and affect longevity of restorations.

A Preliminary Study on the Development of a High Elastic Modulus and Low-Shrinkage Roller-Compacted Concrete Base for Composite Pavement (복합포장용 고탄성 저수축 롤러전압콘크리트 기층 개발을 위한 기초연구)

  • Chung, Gun Woo;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • PURPOSES : The main purpose of this study is to develop a high elastic modulus and low-shrinkage roller-compacted concrete base (RCCB) in order to prevent fatigue cracking and reflective cracking in the asphalt surface layer of composite pavement. Using a rigid base material with low shrinkage can be a solution to this problem. Moreover, a strong rigid base with high elastic modulus is able to shift the location of critical tensile strain from the bottom of the asphalt layer to the bottom of the rigid base layer, which can prevent fatigue cracking in the asphalt layer. METHODS : Sensitivity analysis of composite pavement via numerical methods is implemented to determine an appropriate range of elastic modulus of the rigid base that would eliminate fatigue cracking. Various asphalt thicknesses and elastic moduli of the rigid base are used in the analysis to study their respective influences on fatigue cracking. Low-shrinkage RCC mixture, as determined via laboratory testing with various amounts of a CSA expansion agent (0%, 7%, and 10%), is found to achieve an appropriate low-shrinkage level. Shrinkage of RCC is measured according to KS F 2424. RESULTS : This study shows that composite pavements comprising asphalt thicknesses of (h1) 2 in. with E2 > 19 GPa, 4 in. with E2 > 15 GPa, and 6 in. with E2 > 11 GPa are able to eliminate tensile strain in the asphalt layer, which is the cause of fatigue cracking in this layer. Shrinkage test results demonstrate that a 10% CSA RCC mixture can reduce shrinkage by 84% and 93% as compared to conventional RCC and PCC, respectively. CONCLUSIONS : According to the results of numerical analyses using various design inputs, composite pavements are shown to be able to eliminate fatigue cracking in composite pavement. Additionally, an RCC mixture with 10% CSA admixture is able to reduce or eliminate reflective cracking in asphalt surfaces as a result of the significant shrinkage reduction in the RCC base. Thus, this low-shrinkage base material can be used as an alternative solution to distresses in composite pavement.

Correlation Between the Composition of Compliant Coating Material and Drag Reduction Efficiency (유연벽면 점탄성 소재 배합비와 저항저감 효과의 상관관계)

  • Lee, In-Won;An, Nam-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.389-395
    • /
    • 2009
  • A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Pusan National University. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of $0.55{\times}0.25m^2$ size. A set of the insertions was designed and manufactured: 3 mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic$^{(R)}$ S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss factor were measured accurately for these materials in the frequency range from 40 Hz to 3 kHz. The aging of the materials (variation of their properties) for the period of one year was documented as well. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coating. The strong compliant coating achieved 5% drag reduction within a velocity range $20{\sim}40$ m/s while standard and weak coatings increased drag reduction.

Performance of under foundation shock mat in reduction of railway-induced vibrations

  • Sadeghi, Javad;Haghighi, Ehsan;Esmaeili, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.425-437
    • /
    • 2021
  • Under foundation shock mats have been used in the current practice in order to reduce/damp vibrations received by buildings through the surrounding environment. Although some investigations have been made on under foundation shock mats performance, their effectiveness in the reduction of railway induced-vibrations has not been fully studied, particularly with the consideration of underneath soil media. In this regard, this research is aimed at investigating performance of shock mat used beneath building foundation for reduction of railway induced-vibrations, taking into account soil-structure interaction. For this purpose, a 2D finite/infinite element model of a building and its surrounding soil media was developed. It includes an elastic soil media, a railway embankment, a shock mat, and the building. The model results were validated using an analytical solution reported in the literature. The performance of shock mats was examined by an extensive parametric analysis on the soil type, bedding modulus of shock mat and dominant excitation frequency. The results obtained indicated that although the shock mat can substantially reduce the building vibrations, its performance is significantly influenced by its underneath soil media. The softer the soil, the lower the shock mat efficiency. Also, as the train excitation frequency increases, a better performance of shock-mats is observed. A simplified model/method was developed for prediction of shock mat effectiveness in reduction of railway-induced vibrations, making use of the results obtained.