• Title/Summary/Keyword: module combination

Search Result 229, Processing Time 0.026 seconds

A Study on the Availability Modelling and Assessment with Failure Density Function of Major Equipment for a Sewage Treatment Plant (하수처리장 주요 기자재의 고장확률밀도함수를 이용한 가용도 모델링 및 평가에 관한 연구)

  • Lee, Hong-Cheol;Kwak, Pilljae;Lee, Hyundong;Hwang, In-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.763-768
    • /
    • 2013
  • The simulation investigation on the availability with failure density function of major equipment for a sewage treatment plant has been carried out. This study focuses on the availability of the plant and criticality with equipment module induced by component layout and its failure function. The equipment classification of sewage treatment plant and its failure function are established. Also solution methodologies are introduced as Monte-Carlo simulation method and event algorithm for uncertainty problem. The availability in the case of serial connection of equipment with all exponential function is calculated as around 50.4%. In other case of parallel combination with back up equipment, the availability showed over 80.1%. The criticality that a ffects availability showed high value over 77% in the dehydration and concentration process of sludge.

Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under a Wide Load Range

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.9-13
    • /
    • 2010
  • This paper proposes an input-series-output-parallel connected ZVS full bridge converter with interleaved control for photovoltaic power conditioning systems (PV PCS). The input-series connection enables a fully modular power-system architecture, where low voltage and standard power modules can be connected in any combination at the input and/or at the output, to realize any given specifications. Further, the input-series connection enables the use of low-voltage MOSFETs that are optimized for a very low RDSON, thus, resulting in lower conduction losses. The system costs decrease due to the reduced current, and the volumes of the output filters due to the interleaving technique. A topology for a photovoltaic (PV) dc/dc converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing the PV module characteristics is proposed. The control scheme, consisting of an output voltage loop, a current loop and input voltage balancing loops, is proposed to achieve input voltage sharing and output current sharing. The total PV system is implemented for a 10-kW PV power conditioning system (PCS). This system has a dc/dc converter with a 3.6-kW power rating. It is only one-third of the total PV PCS power. A 3.6-kW prototype PV dc/dc converter is introduced to experimentally verify the proposed topology. In addition, experimental results show that the proposed topology exhibits good performance.

Municipal wastewater reclamation for non-potable use using hollow- fiber membranes

  • Waghmare, Sujata;Masid, Smita;Rao, A. Prakash;Roy, Paramita;Reddy, A.V.R.;Nandy, T.;Rao, N.N.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • Approximately 80% of water used in urban areas reappears as municipal wastewater (MWW). Reclamation of MWW is an attractive proposition under the present scenario of water stressed cities in India. In this paper, we attempted to reclaim MWW using lab-scale hollow- fiber (HF) membrane modules for possible reuse in non-potable applications. Experiments were conducted to evaluate the efficiency of virgin HF ($M_1$) and modified HF ($M_2$) modules. The $M_2$ module consists of HF modified with a skin layer formed through interfacial polymerization of m-phenylenediamine with trimesoyl chloride (MPD-TMC). The molecular weight cut-off (MWCO) of $M_1$ was 44000 g/mol and that of $M_2$ 10000 -14000 g/mol on the basis of rejection of polyethylene glycol. The combination of $M_1$ and $M_2$ modules was able to reduce concentrations of most of the pollutants in sewage and improved the treated water quality to the acceptable limits for non potable reuse applications. It is found that about 98-99% of the initial flux is recovered by the backwashing process, which was approximately two times in a month when operated continuously.

Growth and Optical Property Characterization of KTP Crystal (KTP 단결정 성장 및 광학 특성에 관한 연구)

  • Lee, Seong-Guk;Kim, Yong-Hun;Ma, Dong-Jun;Han, Jae-Yong;Park, Seong-Su;Lee, Sang-Hak
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.781-785
    • /
    • 1995
  • from the $K_{6}$P$_4$ $O_{13}$ flux using a temperature cooling method. According to SHG outpower measurement, phase matching angle is $\theta$=90$^{\circ}$, $\Phi$=23.3$^{\circ}$and angular acceptance of $\Phi$ direction is about 2 degree, Deviation of phase matching angle due to index inhomogeneity in KTP crystal is 0.17 degree. A 20mW green laser was obtained with the combination of a intracavity Nd ; YAG and KTP crystal.

  • PDF

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.

Development of Pollutant Loading Estimation System using GIS (GIS를 이용한 유역별 오염부하량 산정시스템의 개발)

  • Ham, Kwang-Jun;Kim, Joon-Hyun;Shim, Jae-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.3
    • /
    • pp.97-107
    • /
    • 2005
  • The purpose of this study is to develop a system, which estimates watershed pollutant loading rate through the combination of GIS and computational mode. Also, the applicability of this study was estimated by the application of the above system for Chuncheon City. The detailed results of these studies are as follows; The pollutant loading estimation system was developed for more convenient estimation of pollutant loading rate in watershed, and the system load was minimized by the separation of estimation module for point and non-point source. This system on the basis of GIS is very economical and efficient because it can be applied to other watershed with the watershed map. System modification is not needed. The pollutant loading estimation system for point source was developed to estimate the pollutant loading rate in watershed through the extraction of the proper data from all districts and yearly data and the execution of spatial analysis which is main function of GIS. From the verification result of spatial analysis, real watershed area and the administrative districtarea extracted by spatial analysis were $1,114,893,340.15m^2$ and $1,114,878,683.68m^2$, respectively. It shows that the spatial analysis results were very exact with only 0.001% error. The pollutant loading estimation system for non-point source was developed to calculate the pollutant loading rate through the overlaying of land-use and watershed map after the construction of new land-use map using the land register database with most exact land use classification. Application result for Chuncheon City shows that the proposed system results in one percent land use error while the statistical method results in five percent. More exact nonpoint source pollutant loading was estimated from this system.

A Study on Estimation of Added Resistance in Waves Using Modified Radiated Energy Method and Short Wave Correction Method (수정된 방사 에너지법과 단파장 영역 보정법을 이용한 파랑 중 부가저항 추정에 관한 연구)

  • Oh, Seunghoon;Yang, Jinho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • A simple calculation tool for added resistance in waves is developed to utilize for initial design or embedded module for navigation support system. In order to select an appropriate calculation method for added resistance in waves, three methods (drift method, integrated pressure method, radiated energy method) based on strip method are applied to Wigley I and KVLCC2. The methods for added resistance in waves give the underestimated results because it is difficult to consider nonlinear effects due to reflected wave. We apply asymptotic (Faltinsen's method) and empirical formula (NMRI's method) to improve the accuracy for short wave length region. In comparison with experimental results, the combination of radiated energy method and short wave correction method of NMRI is the most reasonable. However, a simple sum of results calculated by two methods gives rise to the overestimation of added resistance for short wave length region because added resistance of radiated energy method exits in total reflection region. To overcome this problem, modified radiated energy method is proposed using correction coefficient defined by reflection coefficient of NMRI's method. Finally, added resistance in regular waves is composed of added resistance of modified radiated energy method and that of short wave correction method of NMRI. Estimated added resistance in regular waves is validated by comparison with experimental results of other research groups.

Embedded Inductors in MCM-D for RF Appliction (RF용 MCM-D 기판 내장형 인덕터)

  • 주철원;박성수;백규하;이희태;김성진;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.31-36
    • /
    • 2000
  • We developed embedded inductors in MCM-D substrate for RF applications. The increasing demand for high density packaging was the driving forces to the development of MCM-D technology. Most of these development efforts have been focused on high performance digital circuits. However, recently there is a great need fur mixed mode circuits with a combination of digital, analog and microwave devices. Mixed mode modules often have a large number of passive components that are connected to a small number of active devices. Integration of passive components into the high density MCM substrate becomes desirable to further reduce cost, size, and weight of electronic systems while improving their performance and reliability. The proposed MCM-D substrate was based on Cu/photosensitive BCB multilayer and Ti/Cu is used to form the interconnect layer. Seed metal was formed with 1000 $\AA$ Ti/3000 $\AA$ Cu by sputtering method and main metal was formed with 3 $\mu\textrm{m}$ Cu by electrical plating method. The multi-turn sprial inductors were designed in coplanar fashion. This paper describe the manufacturing process of integrated inductors in MCM-D substrate and the results of electrical performance test.

  • PDF

Positive and Negative Covariation Mechanism of Multiple Muscle Activities During Human Walking (보행 과정에서 발생하는 복합 근육 활성의 양성 및 음성 공변 메커니즘)

  • Kim, Yushin;Hong, Youngki
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.173-184
    • /
    • 2018
  • In human walking, muscle co-contraction which produces simultaneous activities of multiple muscles is important in motor control mechanism of the central nervous system. This study aims to understand positive and negative covariation mechanism of inter-muscle activities during walking. In this study, we measured electromyography (EMG) in leg muscles. To identify motor modules, we recored EMG from 4 leg muscles bilaterally (the tibialis anterior, medial gastrocnemius, rectus femoris and medial hamstring muscles) and performed non-negative matrix factorization (NMF) and principa component analysis (PCA). Then, we computed covariation values from various combinations between muscles or motor modules and used two-way repeated measures analysis of variance to identify significantly different covariation patterns between muscle combinations. As the results, we found significant differences between covariation values of muscle combinations (p < 0.05). muscle groups within the same motor modules produced the positive covariations. However, there were strong negative covariation between motor modules. There was negative covariation in all muscle combination. Stable inter-module negative covariation suggests that motor modules may be the control unit in the complex motor coordination.

Meter Numeric Character Recognition Using Illumination Normalization and Hybrid Classifier (조명 정규화 및 하이브리드 분류기를 이용한 계량기 숫자 인식)

  • Oh, Hangul;Cho, Seongwon;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.71-77
    • /
    • 2014
  • In this paper, we propose an improved numeric character recognition method which can recognize numeric characters well under low-illuminated and shade-illuminated environment. The LN(Local Normalization) preprocessing method is used in order to enhance low-illuminated and shade-illuminated image quality. The reading area is detected using line segment information extracted from the illumination-normalized meter images, and then the three-phase procedures are performed for segmentation of numeric characters in the reading area. Finally, an efficient hybrid classifier is used to classify the segmented numeric characters. The proposed numeric character classifier is a combination of multi-layered feedforward neural network and template matching module. Robust heuristic rules are applied to classify the numeric characters. Experiments using meter image database were conducted. Meter image database was made using various kinds of meters under low-illuminated and shade-illuminated environment. The experimental results indicates the superiority of the proposed numeric character recognition method.