DOI QR코드

DOI QR Code

Positive and Negative Covariation Mechanism of Multiple Muscle Activities During Human Walking

보행 과정에서 발생하는 복합 근육 활성의 양성 및 음성 공변 메커니즘

  • 김유신 (한국과학기술원 신경재활공학연구실) ;
  • 홍영기 (청주대학교 스포츠의학과)
  • Received : 2017.11.21
  • Accepted : 2018.01.03
  • Published : 2018.01.28

Abstract

In human walking, muscle co-contraction which produces simultaneous activities of multiple muscles is important in motor control mechanism of the central nervous system. This study aims to understand positive and negative covariation mechanism of inter-muscle activities during walking. In this study, we measured electromyography (EMG) in leg muscles. To identify motor modules, we recored EMG from 4 leg muscles bilaterally (the tibialis anterior, medial gastrocnemius, rectus femoris and medial hamstring muscles) and performed non-negative matrix factorization (NMF) and principa component analysis (PCA). Then, we computed covariation values from various combinations between muscles or motor modules and used two-way repeated measures analysis of variance to identify significantly different covariation patterns between muscle combinations. As the results, we found significant differences between covariation values of muscle combinations (p < 0.05). muscle groups within the same motor modules produced the positive covariations. However, there were strong negative covariation between motor modules. There was negative covariation in all muscle combination. Stable inter-module negative covariation suggests that motor modules may be the control unit in the complex motor coordination.

보행 과정에서 여러 근육이 동시에 수축하는 운동 모듈 또는 근육 시너지는 매우 중요한 중추신경계 운동조절 메커니즘이다. 본 연구는 걷는 동안 근육 간 양성 및 음성 공변 패턴을 이해하는 것을 목표로 한다. 본 연구에서는 트레드밀 보행 시 발생하는 다리 근육 활성을 근전도 검사를 통해 측정하였다. 동시 수축근육 그룹, 즉 운동 모듈을 확인하기 위해 우리는 양쪽 4 개의 다리 근육(전경골근, 내측 비복근, 대퇴직근, 내측 슬괵근)에서 근전도 데이터를 수집하였고, 이를 바탕으로 비음수행렬분해 및 주성분 분석을 수행하였다. 이후 근육 또는 운동 모듈 간의 다양한 조합으로부터 공변이 값을 계산하였고, 이원배치분산분석을 이용하여 각 조합들에서 발생하는 공변이 패턴을 비교하였다. 그 결과, 다양한 조합 사이에 유의미한 공변이 값의 차이가 발견되었다(p < 0.05). 같은 운동 모듈로 정의된 특정 근육 사이에서 발생하는 근 활성은 양성공변이를 보여주었으나 운동 모듈 사이에서는 음성 공변이를 보여주었다. 모든 근육 조합들 사이에서는 음성 공변이가 발생하였다. 운동 모듈 사이에서 안정적으로 발생하는 음성 공변이는 운동 모듈이 복잡한 운동 조정의 제어 단위(control unit) 일 수 있음을 암시하고 있다.

Keywords

References

  1. Y. P. Ivanenko, G. Cappellini, N. Dominici, R. E. Poppele, and F. Lacquaniti, "Modular control of limb movements during human locomotion," Journal of Neuroscience, Vol.27, No.41, pp.11149-11161, 2007. https://doi.org/10.1523/JNEUROSCI.2644-07.2007
  2. S. A. Chvatal and L. H. Ting, "Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking," The Journal of neuroscience : the official journal of the Society for Neuroscience, Vol.32, No.35, pp.12237-12250, 2012. https://doi.org/10.1523/JNEUROSCI.6344-11.2012
  3. J. P. Scholz and G. Schoner, "The uncontrolled manifold concept: identifying control variables for a functional task," Experimental brain research, Vol.126, No.3, pp.289-306, 1999. https://doi.org/10.1007/s002210050738
  4. M. L. Latash, "The bliss (not the problem) of motor abundance (not redundancy)," Experimental brain research, Vol.217, No.1, 2012.
  5. A. G. Auyang, J. T. Yen, and Y. H. Chang, "Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping," Experimental brain research, Vol.192, No.2, pp.253-264, 2009. https://doi.org/10.1007/s00221-008-1582-7
  6. Y. H. Chang, A. G. Auyang, J. P. Scholz, and T. R. Nichols, "Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury," Journal of Experimental Biology, Vol.212, No.21, pp.3511-3521, 2009. https://doi.org/10.1242/jeb.033886
  7. M. Darainy and D. J. Ostry, "Muscle cocontraction following dynamics learning," Experimental brain research, Vol.190, No.2, pp.153-163, 2008. https://doi.org/10.1007/s00221-008-1457-y
  8. M. C. Rosa, A. Marques, S. Demain, and C. D. Metcalf, "Lower limb co-contraction during walking in subjects with stroke: A systematic review," Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology, Vol.24, No.1, pp.1-10, 2014. https://doi.org/10.1016/j.jelekin.2013.10.016
  9. J. S. Higginson, F. E. Zajac, R. R. Neptune, S. A. Kautz, and S. L. Delp, "Muscle contributions to support during gait in an individual with post-stroke hemiparesis," Journal of biomechanics, Vol.39, No.10, pp.1769-1777, 2006. https://doi.org/10.1016/j.jbiomech.2005.05.032
  10. Y. Kim, J. K. Shim, Y. K. Hong, S. H. Lee, and B. C. Yoon, "Cutaneous sensory feedback plays a critical role in agonist-antagonist coactivation," Exp Brain Res, Vol.229, No.2, pp.149-156, 2013. https://doi.org/10.1007/s00221-013-3601-6
  11. B. Hanna-Boutros, S. Sangari, L. S. Giboin, M. M. El Mendili, A. Lackmy-Vallee, V. Marchand-Pauvert, and M. Knikou, "Corticospinal and reciprocal inhibition actions on human soleus motoneuron activity during standing and walking," Physiological reports, Vol.3, No.2, pp.342-351, 2015.
  12. G. Cappellini, Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti, "Motor patterns in human walking and running," Journal of neurophysiology, Vol.95, No.6, pp.3426-3437, 2006. https://doi.org/10.1152/jn.00081.2006
  13. D. Martelli, V. Monaco, L. B. Luciani, and S. Micera, "Angular Momentum During Unexpected Multidirectional Perturbations Delivered While Walking," Ieee Transactions on Biomedical Engineering, Vol.60, No.7, pp.1785-1795, 2013. https://doi.org/10.1109/TBME.2013.2241434
  14. F. Lacquaniti, Y. P. Ivanenko, and M. Zago, "Patterned control of human locomotion," Journal of Physiology-London, Vol.590, No.10, pp.2189-2199, 2012. https://doi.org/10.1113/jphysiol.2011.215137
  15. E. Bizzi and V. C. K. Cheung, "The neural origin of muscle synergies," Front Comput Neurosc, Vol.7, No.3, pp.327-336, 2013.
  16. S. A. Safavynia and L. H. Ting, "Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations," Journal of neurophysiology, Vol.107, No.1, pp.159-177, 2012. https://doi.org/10.1152/jn.00653.2011
  17. V. Krishnamoorthy, J. P. Scholz, and M. L. Latash, "The use of flexible arm muscle synergies to perform an isometric stabilization task," Clin Neurophysiol, Vol.118, No.3, pp.525-537, 2007. https://doi.org/10.1016/j.clinph.2006.11.014
  18. V. Krishnamoorthy, S. Goodman, V. Zatsiorsky, and M. L. Latash, "Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes," Biol Cybern, Vol.89, No.2, pp.152-161, 2003. https://doi.org/10.1007/s00422-003-0419-5
  19. A. d'Avella and M. C. Tresch, "Modularity in the motor system: decomposition of muscle patterns as combinations of time-varying synergies," Advances in Neural Information Processing Systems, Vol.14, No.6, pp.141-148, 2002.
  20. N. Dominici, Y. P. Ivanenko, G. Cappellini, A. d'Avella, V. Mondi, M. Cicchese, A. Fabiano, T. Silei, A. Di Paolo, C. Giannini, R. E. Poppele, and F. Lacquaniti, "Locomotor Primitives in Newborn Babies and Their Development," Science, Vol.334, No.6058, pp.997-999, 2011. https://doi.org/10.1126/science.1210617
  21. M. L. Latash, N. Kang, and D. Patterson, "Finger coordination in persons with Down syndrome: atypical patterns of coordination and the effects of practice," Experimental brain research, Vol.146, No.3, pp.345-355, 2002. https://doi.org/10.1007/s00221-002-1189-3
  22. Y. Shinoda, J. Yokota, and T. Futami, "Divergent projection of individual corticospinal axons to motoneurons of multiple muscles in the monkey," Neuroscience letters, Vol.23, No.1, pp.7-12, 1981. https://doi.org/10.1016/0304-3940(81)90182-8
  23. Y. Sugiuchi, S. Kakei, Y. Izawa, and Y. Shinoda, "Functional synergies among neck muscles revealed by branching patterns of single long descending motor-tract axons," Prog Brain Res, Vol.143, No.30, pp.411-421, 2004.
  24. J. Verrel, M. Lovden, and U. Lindenberger, "Motor-equivalent covariation stabilizes step parameters and center of mass position during treadmill walking," Experimental brain research, Vol.207, No.2, pp.13-26, 2010. https://doi.org/10.1007/s00221-010-2424-y
  25. G. Torres-Oviedo and L. H. Ting, "Muscle synergies characterizing human postural responses," Journal of neurophysiology, Vol.98, No.4, pp.2144-2156, 2007. https://doi.org/10.1152/jn.01360.2006
  26. M. C. Tresch, V. C. K. Cheung, and A. d'Avella, "Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets," Journal of neurophysiology, Vol.95, No.4, pp.2199-2212, 2006. https://doi.org/10.1152/jn.00222.2005
  27. 박상찬, "제4차 산업혁명과 데이터 과학," 한국콘텐츠학회지, 제15권, 제1호, pp.21-28, 2017.
  28. 박길하, "디지털헬스케어 분야에서의 빅데이터활용 동향," 한국콘텐츠학회지, 제15권, 제1호, pp.35-37, 2017.