• Title/Summary/Keyword: modular unit structure

Search Result 54, Processing Time 0.019 seconds

A Study on Implementation of Multiple-Valued Arithmetic Processor using Current Mode CMOS (전류모드 CMOS에 의한 다치 연산기 구현에 관한 연구)

  • Seong, Hyeon-Kyeong;Yoon, Kwang-Sub
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.8
    • /
    • pp.35-45
    • /
    • 1999
  • In this paper, the addition and the multiplicative algorithm of two polynomials over finite field $GF(p^m)$ are presented. The 4-valued arithmetic processor of the serial input-parallel output modular structure on $GF(4^3)$ to be performed the presented algorithm is implemented by current mode CMOS. This 4-valued arithmetic processor using current mode CMOS is implemented one addition/multiplication selection circuit and three operation circuits; mod(4) multiplicative operation circuit, MOD operation circuit made by two mod(4) addition operation circuits, and primitive irreducible polynomial operation circuit to be performing same operation as mod(4) multiplicative operation circuit. These operation circuits are simulated under $2{\mu}m$ CMOS standard technology, $15{\mu}A$ unit current, and 3.3V VDD voltage using PSpice. The simulation results have shown the satisfying current characteristics. The presented 4-valued arithmetic processor using current mode CMOS is simple and regular for wire routing and possesses the property of modularity. Also, it is expansible for the addition and the multiplication of two polynomials on finite field increasing the degree m and suitable for VLSI implementation.

  • PDF

A Study on the Development of a Welding Carriage System for Vertical Weld (수직 용접을 위한 용접 캐리지 시스템 개발에 관한 연구)

  • Byun, Hong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.246-254
    • /
    • 2016
  • Thick-shell welding for super-sized oil storage tanks is currently done manually, which causes deterioration in quality and a lack of uniformity due to frequent rewelding. The limitations of the external environment must also be considered for manual welding. This paper describes the development of a carriage system for automatic vertical welding to increase reliability, reduce cost, and enhance productivity. The system consists of a welding platform, carriage device, and control unit, which were conceptually designed according to design specifications and manufactured with modular parts. In addition, the structure was analyzed for safety and to predict design problems in advance, and the results are reflected in reviewing the design. To evaluate the performance of the system, a tensile test, bending test, and weld time test were carried out, and the results were satisfactory. The time required for automatic weld was greatly improved by more than 87%, compared to the manual welding time.

Van Test for GAK NM (GPS Adapter Kit Navigation Module) Using High Performance INS (고정밀 INS를 이용한 GAK(GPS Adapter Kit) 항법 모듈의 차량 시험)

  • Oh, Sang-Heon;Son, Seok-Bo;Kwon, Seung-Bok;Shin, Don-Ho;Lee, Sang-Jeong;Park, Chan-Sik;Hwang, Dong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.260-267
    • /
    • 2007
  • GPS adapter kit (GAK) is a GPS/INS guided range extension system to improve the accuracy and availability of existing dumb bombs. In this paper, a van test result of GPS/INS navigation module (NM) for guided bomb with GAK has been presented. The NM consists of a commercial MEMS IMU, embedded GPS receiver and navigation computer unit (NCU). The GPS receiver of NM was designed to use multiple antennas for satellite visibility and GPS attitude determination. The real-time navigation software was designed by modularized structure to guarantee the maintainability and extensibility. In order to evaluate the performance of the NM, a van test was preformed by using a high performance INS - Honeywell H-726 MAPS(Modular Azimuth Position System).The van test results show that the GAK NM with GPS attitude measurement gives better navigation performance than a conventional GPS/INS integration and good coasting capabilities under jamming environment.

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.