본 논문에서는 조명 및 Pose 등의 다양한 환경변화에 강인한 얼굴 및 눈 검출 알고리즘을 제안한다. 일반적으로 눈 검출은 얼굴검출과 동시에 수행되며 조명 및 Pose의 변화에 따라 검출 성능에 영향을 준다. 본 논문에서는 Modified Census Transform 알고리즘 사용하여 환경변화에 강인한 얼굴검출을 수행한다. 눈은 얼굴영역의 중요한 특징으로 주변의 조명 변화 및 안경 등의 다양한 요인으로 검출 성능의 저하 요인이 된다. 이러한 문제점의 해결을 위하여 Gabor transformation과 Feature from Accelerated Segment Test 알고리즘 기반의 눈 검출 알고리즘을 제안한다. 제안된 얼굴검출 알고리즘은 27.4ms의 검출속도와 98.4%의 검출율을 보이며, 눈 검출 알고리즘의 경우 36.3ms의 검출속도와 96.4%의 검출율을 보이는 것을 확인하였다.
본 논문은 도로주행 영상에서 도로표지판을 인식하는 방법을 제안한다. 지능형 차량에서 얻어지는 도로표지판 영상은 일반적인 사물 영상과는 다른 두 가지 특징이 있다. 첫째는 대상이 되는 사물들은 종류가 제한적이고 형태가 단순한 도형인 경우가 대부분이다. 둘째는 일반적인 도로주행 영상은 다양한 조명 환경과 날씨 상태로 인해서 선명한 영상을 취득하기 어려운 점이다. 본 논문에서는 조명 변화가 심한 도로주행 영상에 대해서 효과적으로 특징을 추출하기 위해서 Modified Census Transform(MCT)을 개선한 특징추출 방법을 제안한다. 추출된 특징들은 히스토그램으로 쌓여지고 영상 전반에 걸쳐 아주 고차원의 기술자(Descriptor)로 변환되며, 변환된 수많은 기술자들은 가우시안 혼합 모델(Gaussian Mixture Model)을 활용한 Fisher-vector 방법에 의해서 저차원으로 변형하여 특징으로 사용한다. 본 논문에서 제안하는 방법은 일반적인 표지판 인식 방법에 비해서 조명변화에 강한 검출 결과를 보여주었으며, 실시간 검출 및 인식도 가능하였다.
본 논문에서는 변형된 하우스더프 거리 (MDH: Modified Hausdorff Distance)를 이용한 눈 개폐 감지 알고리즘을 제안한다. 제안하는 알고리즘은 얼굴 검출과 눈 개폐 감지로 크게 구분된다. 얼굴 영역의 검출을 위하여 고정 크기의 영역 내에서 픽셀 값을 이용하는 지역 구조특성의 MCT (Modified Census Transform)특징기반 방법을 사용하였다. 이후, 검출된 얼굴 영역 내에서 MHD를 이용하여 눈의 위치 및 개폐를 판단한다. 얼굴 검출의 처리절차는 먼저, 오프라인에서 다양한 얼굴 영상에 대해 MCT 이미지를 생성하고, 이를 기반으로 PCA를 이용하여 기준이 되는 특징벡터들을 추출한다. 다음으로, 온라인에서는 입력되는 실험 영상 내에서 새롭게 추출된 특징벡터들과 기준이 되는 특징 벡터들 간의 유클리드 거리를 이용하여 얼굴 영역을 검출하는 순서로 진행된다. 이후, 검출된 얼굴 영역 내에서 MHD 기반의 눈 영역 검출과 템플릿 매칭을 수행하여 눈의 개폐를 감지한다. 제안하는 방법의 성능 검증을 위하여 그레이 스케일 영상 (30FPS, $320{\times}180$)을 입력으로 실험을 수행한 결과, 눈 계폐 검출율에서 평균 94.04%의 정확도를 달성하였다.
본 논문은 모바일 환경에서의 다중생체인식을 통한 개인인증 시나리오에서 false acceptance rate (FAR)가 향상된 시스템을 제안한다. 다중생체인식을 위하여 얼굴인식과 화자인식을 선택하였으며, 시스템의 인식 시나리오는 다음을 따른다. 얼굴인식을 위하여 Modified census transform (MCT) 기반의 얼굴검출과 k-means 클러스터 분석 (cluster analysis) 알고리즘 기반의 눈 검출을 통해 얼굴영역 전처리를 수행하고, principal component analysis (PCA) 기반의 얼굴인증 시스템을 구현한다. 화자인식을 위하여 음성의 끝점추출과 Mel frequency cepstral coefficient (MFCC) 특징을 추출하고, dynamic time warping (DTW) 기반의 화자 인증 시스템을 구현한다. 그리고 각각의 생체인식을 본 논문에서 제안된 방법을 기반으로 융합하여 인식률을 향상시킨다. 본 논문의 실험은 Android 환경에서 수행하였으며, 구현한 다중생체인식 시스템과 단일생체인식 시스템과의 FAR을 비교하였다. 단일 얼굴인식의 FAR은 4.6%, 단일 화자인식의 FAR은 6.7%로 각각 나타났으며, 제안된 다중생체인식 시스템의 FAR은 1.8%로 크게 감소하였다.
본 논문에서는 도로주행 영상에서의 자동차 번호판 검출방법을 제안한다. 제안하는 방법은 조명변화에 강인한 8bit-MCT 특징과 랜드마크 기반의 Adaboost 알고리즘을 이용하여 번호판 후보 영역을 생성하고, Adaboost의 검출 스코어를 이용하여 번호판의 위치를 확률로 추정하는 현저도 지도를 생성한다. 현저도 지도에서 임계값 이상의 영역을 번호판 후보 영역으로 검출하고, 각 후보 영역에 대하여 지역분산을 이용하여 영역을 보정한 후 SVM과 8bit-MCT의 히스토그램을 특징으로 사용하여 영역을 검증하고 자동차 번호판 영역을 확정한다. 본 논문에서 제안한 방법을 한국과 유럽의 다양한 도로주행 영상에 적용하여 85%의 안정적인 검출 성능을 실험을 통하여 입증하였다.
In face examinations, gender classification (GC) is one of several fundamental tasks. Recent literature on GC primarily utilizes datasets containing high-resolution images of faces captured in uncontrolled real-world settings. In contrast, there have been few efforts that focus on utilizing low-resolution images of faces in GC. We propose a GC method based on a pixel classifier boosting with modified census transform features. Experiments are conducted using large datasets, such as Labeled Faces in the Wild and The Images of Groups, and standard protocols of GC communities. Experimental results show that, despite using low-resolution facial images that have a 15-pixel inter-ocular distance, the proposed method records a higher classification rate compared to current state-of-the-art GC algorithms.
언제 어디서나 사용하기 편리한 인터넷을 통해서 다양한 종류의 멀티미디어 콘텐츠가 자유롭게 유통되고 있는 반면, 어린이나 청소년에게 유해할 수 있는 영상 콘텐츠도 쉽게 얻을 수 있는 환경이 마련되어서 사회적으로 문제가 되고 있다. 본 논문에서는 인공 신경망을 이용하여 입력 영상의 유해성 유무를 자동으로 결정하는 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 입력 영상으로부터 MCT 특징을 기반으로 사람의 얼굴 영역을 검출한다. 그런 다음, 색상 특징을 활용하여 피부 색상 영역을 찾고, 유두의 후보 영역들을 추출한다. 마지막으로 계층적인 인공 신경망을 활용하여 유두의 후보 영역들 중에서 실제적인 유두 영역만을 필터링함으로써 입력 영상의 유해성 유무를 확인한다. 본 논문의 실험결과에서는 인공 신경망을 이용한 제안된 방법이 입력되는 영상에서 유두 영역을 보다 강건하게 검출함으로써 영상의 유해 정도를 효과적으로 결정한다는 것을 보여준다.
본 논문은 조명 변화에 강인한 실시간 얼굴인식 시스템을 제안한다. 이를 위하여 제안한 알고리즘에서는 다양한 조명 조건에서도 강인한 얼굴 영상의 지역적 구조 특징을 추출하고, 추출된 특징을 이용하여 외형기반 얼굴인식 방법을 수행하였다. 또한 실시간 얼굴인식 시스템의 경우 연속적으로 영상을 획득하는 동안 발생하는 블러링 된 영상, 측면영상 등 얼굴 인식에 적합하지 않은 영상에 대한 인식 결과를 출력하게 된다. 따라서 이러한 잘못된 인식 결과들을 제거하고, 프레임 사이의 연속된 인식 결과를 고려하여 인식결과를 출력함으로써 결과의 안정성을 확보할 수 있는 방법을 함께 제안한다. 실험 결과에서는 제안한 알고리즘의 조명변화에 대한 성능을 평가하기 위해 Yale database를 사용하여 기존 외형기반 알고리즘과 비교하였다. 그 결과 다양한 조명 조건에서의 인식률이 기존 방법보다 20% 정도 향상 되었다. 또한 연속적으로 영상을 취득하는 시스템에서 제안한 방법의 얼굴 인식 성능을 평가한 결과 매 프레임 결과를 출력하는 방법에 비해 안정적인 성능을 보였다.
본 논문에서는 실시간 얼굴 검출을 위한 부스팅 기반 분류 방법을 제안한다. 제안하는 방법에서는 조명과 얼굴크기 및 변형에 강건하게 얼굴을 검출하기 위해 깊이영상을 이용하고, 깊이차이특징을 사용하여 I-MCTBoost 분류기를 통해 학습 및 인식을 수행한다. I-MCTBoost는 약분류기로 구성된 강분류기들의 연결을 통해 인식을 수행한다. 약분류기의 학습 과정은 깊이차이특징을 생성하고, 이중에서 8개의 특징을 조합하여 약분류기를 구성하며 이때 각 특징은 2진비트(binary bit)로 표현된다. 강분류기는 정해진 약분류기의 개수만큼 반복적으로 약분류기를 선택하는 과정을 통해 학습이 이루어지며, 학습 과정에서 학습 샘플의 가중치를 갱신하고 학습 데이터를 추가하여 강건한 분류를 수행할 수 있도록 한다. 본 논문에서는 깊이차이특징에 대해 설명하고 이를 이용한 I-MCTBoost의 약분류기 학습 방법과 강분류기 학습 방법에 대해 제안한다. 마지막으로 제안된 분류기를 기존 MCT를 이용한 분류기와 정성적, 정량적 분석을 통해 비교하고 제안한 분류기의 타당성과 효율성을 입증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.