Abstract
This paper proposes a method of boosting-based classification for the purpose of real-time face detection. The proposed method uses depth images to ensure strong performance of face detection in response to changes in lighting and face size, and uses the depth difference feature to conduct learning and recognition through the I-MCTBoost classifier. I-MCTBoost performs recognition by connecting the strong classifiers that are constituted from weak classifiers. The learning process for the weak classifiers is as follows: first, depth difference features are generated, and eight of these features are combined to form the weak classifier, and each feature is expressed as a binary bit. Strong classifiers undergo learning through the process of repeatedly selecting a specified number of weak classifiers, and become capable of strong classification through a learning process in which the weight of the learning samples are renewed and learning data is added. This paper explains depth difference features and proposes a learning method for the weak classifiers and strong classifiers of I-MCTBoost. Lastly, the paper presents comparisons of the proposed classifiers and the classifiers using conventional MCT through qualitative and quantitative analyses to establish the feasibility and efficiency of the proposed classifiers.
본 논문에서는 실시간 얼굴 검출을 위한 부스팅 기반 분류 방법을 제안한다. 제안하는 방법에서는 조명과 얼굴크기 및 변형에 강건하게 얼굴을 검출하기 위해 깊이영상을 이용하고, 깊이차이특징을 사용하여 I-MCTBoost 분류기를 통해 학습 및 인식을 수행한다. I-MCTBoost는 약분류기로 구성된 강분류기들의 연결을 통해 인식을 수행한다. 약분류기의 학습 과정은 깊이차이특징을 생성하고, 이중에서 8개의 특징을 조합하여 약분류기를 구성하며 이때 각 특징은 2진비트(binary bit)로 표현된다. 강분류기는 정해진 약분류기의 개수만큼 반복적으로 약분류기를 선택하는 과정을 통해 학습이 이루어지며, 학습 과정에서 학습 샘플의 가중치를 갱신하고 학습 데이터를 추가하여 강건한 분류를 수행할 수 있도록 한다. 본 논문에서는 깊이차이특징에 대해 설명하고 이를 이용한 I-MCTBoost의 약분류기 학습 방법과 강분류기 학습 방법에 대해 제안한다. 마지막으로 제안된 분류기를 기존 MCT를 이용한 분류기와 정성적, 정량적 분석을 통해 비교하고 제안한 분류기의 타당성과 효율성을 입증한다.