• Title/Summary/Keyword: I-MCTBoost (Improved Modified Census Transform)

Search Result 1, Processing Time 0.015 seconds

The I-MCTBoost Classifier for Real-time Face Detection in Depth Image (깊이영상에서 실시간 얼굴 검출을 위한 I-MCTBoost)

  • Joo, Sung-Il;Weon, Sun-Hee;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.3
    • /
    • pp.25-35
    • /
    • 2014
  • This paper proposes a method of boosting-based classification for the purpose of real-time face detection. The proposed method uses depth images to ensure strong performance of face detection in response to changes in lighting and face size, and uses the depth difference feature to conduct learning and recognition through the I-MCTBoost classifier. I-MCTBoost performs recognition by connecting the strong classifiers that are constituted from weak classifiers. The learning process for the weak classifiers is as follows: first, depth difference features are generated, and eight of these features are combined to form the weak classifier, and each feature is expressed as a binary bit. Strong classifiers undergo learning through the process of repeatedly selecting a specified number of weak classifiers, and become capable of strong classification through a learning process in which the weight of the learning samples are renewed and learning data is added. This paper explains depth difference features and proposes a learning method for the weak classifiers and strong classifiers of I-MCTBoost. Lastly, the paper presents comparisons of the proposed classifiers and the classifiers using conventional MCT through qualitative and quantitative analyses to establish the feasibility and efficiency of the proposed classifiers.